
1Database ops, your way

Latency, Conflicts and
Consistency:
MySQL Group Replication vs. Galera
Cluster

2Database ops, your way

Housekeeping items

● Standard presentation format

○ Speaker intro

○ Group poll

○ Agenda

○ Topic

○ Q&A

● Recording will be sent to attendees

3Database ops, your way 3

Your expert
presenter
Who: Ashraf Sharif
What: Support Engineering

Team Lead
Where: Severalnines
Why: 15+ YoE as DBA for MySQL,
MariaDB, Galera, MongoDB, Redis

<img src="image.jpg" alt="Image"
width="300" height="300">

4Database ops, your way

5Database ops, your wayDatabase ops, your way

1. Multi-Primary Replication
2. How it Works?
3. Trade Offs
4. Example Architecture
5. Use Cases
6. Best Practices
7. Q & A

6Database ops, your way

Multi-Primary
Replication

7Database ops, your way

Topology Replication Oracle Percona MariaDB

Single-primary Asynchronous/
Semi-synchronous

● MySQL Community
Server

● MySQL Enterprise
Server

● Percona Server
for MySQL

● Percona Server
for MySQL Pro

● MariaDB Server
● MariaDB

Enterprise Server

Multi-primary

Virtually
synchronous

MySQL
Group

Replication

● MySQL InnoDB Cluster
● MySQL InnoDB ClusterSet
● MySQL InnoDB ReplicaSet

Galera
Cluster

● Percona XtraDB
Cluster

● Percona XtraDB
Cluster Pro

● MariaDB Cluster
● MariaDB

Enterprise
Cluster

Fully synchronous MySQL Cluster (NDB)

MySQL/MariaDB HA Options - 2025

8Database ops, your way 8

Overview
● Virtually synchronous updates on any member in

a group of MySQL servers

● Transaction ordering and broadcasting

● Failure detection

● Conflict handling

● Automatic membership control and provisioning

● Current providers:

○ MySQL Group Replication (MGR) - built
by Oracle

○ Galera Replication (Galera) - built by
Codership (acquired by MariaDB)

● Current products:

○ MGR: MySQL InnoDB Cluster, MySQL
InnoDB ClusterSet, MySQL InnoDB
ReplicaSet

○ Galera: Percona XtraDB Cluster, Percona
XtraDB Cluster Pro, MariaDB Cluster,
MariaDB Enterprise Cluster, Galera
Cluster for MySQL (Codership)

9Database ops, your way 9

Evolution

2011
Galera Cluster
1.0 released by

Codership
(MySQL 5.1)

2012
MariaDB

partners with
Codership -
MariaDB 5.5

Galera Cluster

2013
Percona
launches

Percona XtraDB
Cluster 5.5 using

Galera

2014
Galera

support for
MySQL 5.6

2015
Codership

release
Galera 3.0

2016
MySQL 5.7.17

ships with
Group

Replication

2017
Oracle introduces

MySQL InnoDB Cluster
(GR + MySQL Router +

MySQL Shell)

2019
Galera 4.0

released with
MariaDB 10.4

2020
PXC 8.0 with

Galera 4.0

2025
MariaDB acquired

Codership (the
creator of Galera)

10Database ops, your way

MySQL Group Replication Vendor

MySQL Community
Server

Group replication
plugin

MySQL Group
Replication

MySQL Shell

MySQL Router

MySQL InnoDB
Cluster

Percona Server for
MySQL

Percona
patches

MySQL InnoDB
ClusterSet

MySQL InnoDB
ReplicaSet

11Database ops, your way

Galera Cluster Vendor
MySQL Community

Server
WSREP API +

Galera replication Galera Cluster for MySQL

Percona Server for
MySQL

Percona
patches

WSREP API +
Galera replication Percona XtraDB Cluster

MariaDB
Community Server MariaDB Cluster

MariaDB Enterprise
Server MariaDB Enterprise Cluster

Percona Server for
MySQL Pro

WSREP API +
Galera replication Percona XtraDB Cluster Pro

+

+

+

12Database ops, your way

How it Works

13Database ops, your way 13

Requirements
● A transactional database engine - support

COMMIT/ROLLBACK (InnoDB or XtraDB).

● A primary key on every table.

● A data synchronization tool:

○ MGR: CLONE plugin

○ Galera: mysqldump, rsync, Percona
Xtrabackup, MariaDB Backup

● Group communication plugins/patch:

○ MGR: Paxos/Corosync

○ Galera: GCS + WSREP API

●

● Communication ports:

○ MGR: 3306, 33061, multicast traffic

○ Galera: 3306, 4567, 4568, 4444

● At least 3 nodes for quorum. 1 node is possible
without HA. Arbitrator is also possible (Galera).

● Time sync: NTP/chrony mandatory

● Version:

○ Galera: Same MySQL and Galera major
version across nodes.

○ MGR: Same MySQL major and minor version
across nodes

14Database ops, your way 14

Virtually Synchronous Replication

db1 db2

Client

writeset writeset

OK

Write

Galera Replication

certify

db3

writeset

certify

db1 db2

Client

binlog relaylog

OK

Write

MySQL Group Replication

db3

relaylog

certify

writeset writeset writeset

certify

15Database ops, your way 15

Virtually Synchronous Replication (Galera)

execute writeset commitMember 1

certifyMember 2 commit

certify applyMember 3 commit

Write

apply

Actual commit time

certify

Galera cluster communication

writeset

writeset

discard

discard

rollback

16Database ops, your way 16

Virtually Synchronous Replication (MGR)

execute writeset commitMember 1

relay log binlogMember 2 commit

relay log apply binlogMember 3 commit

Write OK

apply

Actual commit time

binlog

writeset

Group replication

certify

certify

certify

writeset

17Database ops, your way 17

Certification
Transaction

executes on a node

The node extracts the writeset
(rows touched / keys modified)

The writeset is sent to all
nodes for certification

Nodes check whether the
writeset conflicts with

others in flight

If no conflict → commitIf conflict → rollback + retry

● Galera: WSREP API + Galera plugin
● MGR : Paxos-like group communication protocol

● Galera: Extract writeset at row-level
● MGR : Transaction write-set extracted from MySQL’s binary log/GTID

● Galera: Key-based conflict detection
● MGR : Transaction keys conflict detection

● Galera: Certified writesets queue in received queue and apply
● MGR : Certified writesets queue in relaylog and apply

Write DMLs only
(INSERT/UPDATE/DELETE/REPLACE)

18Database ops, your way 18

Automatic Node Provisioning

db1

Galera Cluster

db3
(joining)

1. Compare the
local state with

the cluster

2. Cluster
chooses a donor

db2

3. Sync via SST or IST

● State Snapshot Transfer (SST, a.k.a full syncing):

○ MGR: CLONE plugin

○ Galera: mysqldump, rsync, Percona
Xtrabackup, MariaDB Backup

● Incremental State Transfer (IST, a.k.a delta syncing):

○ MGR: binary logs

○ Galera: Galera cache (gcache)

19Database ops, your way

db2

db1

19

Quorum & Heartbeat

Client Reverse
Proxy

● Quorum is the minimum number of members required
to be available (usually the majority).

● Heartbeat:

○ Galera: Virtual synchrony EVS membership
protocol

○ MGR: XCom (Paxos-like) failure detection and
consensus protocol

● Quorum calculation: Quorum => 50% + 1

● For 2 nodes, if 1 node goes down, quorum will be lost
thus both nodes will be unavailable.

● At least 3 nodes to tolerate unavailability of 1 node
unavailability (5 nodes for 2, 7 nodes for 3, and so on)

● Otherwise, use:

○ Weighted quorum (1 node = 2 votes)

○ Arbitrator node (a vote-only node)

db1 will demote
itself and stop

serving because the
quorum (1/2) is lower

than 50% + 1

20Database ops, your way

db2
(2/3)

db1
(2/3)

20

Quorum & Heartbeat

Client Reverse
Proxy

db3

db1 and db2 will
continue to serve

because the quorum
(2/3) is bigger than

50% + 1

db1
(weight

=2)

Client Reverse
Proxy

db2

db1 will continue to
serve because the

quorum (2/3) is bigger
than 50% + 1

db1
(weight

=2)

Client Reverse
Proxy

db2db2 will demote itself
and stop serving

because the quorum
(1/3) is lower than

50% + 1

21Database ops, your way 21

Split Brain
● Split-brain is the state when two sites are partitioned, cannot

determine the quorum and both remain available:

○ Result: Data divergent. 2 different versions of data.

○ Impact: Pretty hard to rollback once happens,
possibility of data loss.

● Although Galera and MGR has some kind of split brain
protection, they can be misconfigured to cause a split brain.

○ Accidentally bootstrap a partitioned node into a new
cluster

○ Misconfigured wsrep_cluster_address=gcomm:// or
group_replication_bootstrap_group=ON on all
nodes.

22Database ops, your way

db2

db1

22

Split Brain

Client Reverse
Proxy

1/1

1/1

db3 1/1

● Galera: wsrep_cluster_address=gcomm://

● MGR: group_replication_bootstrap_group=ON

These are 3 separate
one-node clusters, not a

three-node cluster
= SPLIT BRAIN

● Galera: wsrep_cluster_address=gcomm://

● MGR: group_replication_bootstrap_group=ON

● Galera: wsrep_cluster_address=gcomm://

● MGR: group_replication_bootstrap_group=ON

RW

RW

RW

RW

23Database ops, your way

db2

db1

23

Split Brain

Client Reverse
Proxy 3/3

3/3

db3 3/3

wsrep_cluster_address=gcomm://db1,db2,db3
This is a three-node
cluster. All data in 1

version.

wsrep_cluster_address=gcomm://db1,db2,db3

wsrep_cluster_address=gcomm://db1,db2,db3

RW

RW

RW

RW

24Database ops, your way

Trade Offs

25Database ops, your way 25

Replication Payload
INSERT INTO table1
(name, age)
VALUES
('John', 29); -- 1 row

UPDATE table1
SET age = 30
WHERE
age = 29; -- 5K rows

5000 row
events

1 row event
200 bytes

0.5 MB

DELETE table1
WHERE
age > 20; -- 500K rows

500,000 row
events

75 MB

UPDATE table1
SET processed = 0
WHERE
processed = 1;
-- 5M rows

5,000,000 rows
events

750 MB

● A writeset of 50+ MB is huge. This can cause:

○ Replication stalls - Big writesets block
certification and stall writes
cluster-wide.

○ Flow control triggering
(wsrep_flow_control_paused) - Nodes
will stop applying until they catch up.

○ Potential transaction failure - If it
exceeds wsrep_max_ws_size (default 1
GB)

● The bigger the transaction size, the higher risk it
will be conflicting with other transactions that
come from another primary.

Estimated
writeset size

26Database ops, your way 26

Replication Payload
● Chunk up a big transaction, into a smaller

transaction.

● Conflicting transactions waste server
resources, plus cause a huge rollback to the
originator node.

○ A ROLLBACK operation in MySQL is
way slower and less optimized than a
COMMIT operation.

● For huge deletes, consider using pt-archiver
from the Percona Toolkit – a low-impact,
forward-only job to nibble old data out of the
table without impacting OLTP queries much.

 # A 5 million rows table. Don't do this:

 mysql> UPDATE mydb.settings SET success = 1;

 # Instead do this. Limit 10K rows per transaction and

loop for 500x

 (bash)$ for i in {1..500}; do

mysql -uuser -p'mypassword' -e \

"UPDATE mydb.settings \

SET success = 1 \

WHERE success != 1 \

LIMIT 10000";

sleep 2;

 done

27Database ops, your way 27

Round Trip Time

db1 db2

Client

writeset writeset

OK

Write

Galera Replication

certify

db3

writeset

certify

"A given row can’t be modified
more than once per RTT"

● 100ms = 0.1 seconds
● 1/0.1 = 10
● Maximum writeset

replication performance
= 10 writesets/second

Datacenter A Datacenter B

average ping=100ms

28Database ops, your way 28

Round Trip Time

RTT Value (ms) Value (s) Calculation
Estimated writeset

replication performance
(tps)

Maximum 0.104 0.000104 1 / 0.000104 9,615

Minimum 0.034 0.000034 1 / 0.000034 29,411

Average 0.057 0.000057 1 / 0.000057 17,543

29Database ops, your way 29

Flow Control
● Flow Control allows a node to pause and resume replication

according to its needs (throttling).

○ This prevents any node from lagging too far behind the
others in applying transactions.

● Flow control makes replication stop, and therefore makes
writes (which are synchronous) stop, on all nodes until flow
control is relaxed.

● For Galera, the fc_limit defaults to 16 writesets. For MGR,
25% of
group_replication_flow_control_certifier_threshold=2

5000

● Recommendation:

○ Uniform hardware specification on all nodes.

○ Connect an asynchronous replica for heavy read-only
workloads like backup or analytics.

db1 db2

Client

writeset writeset

OK
Write

Galera Replication

certify

db3

writeset

certify

received
queue

received
queue

If received queue >
16 transactions,

trigger flow control
flag, telling others

to slow down

30Database ops, your way 30

Causality

● High causality means enforcing order,
consistency and "happens-before"
guarantees between client writes and
reads across the cluster.

● In short = enforce data to
synchronize, even though it could
stall the cluster!

● Useful for critical-reads
(read-after-write semantics)

● You do not need to run all
transactions with the same specific
consistency level, especially if only
some transactions actually require it

Causality Level MySQL Group Replication Galera Cluster

Variable name group_replication_consistency wsrep_sync_wait

Scope Global, Session Session

Supported values ● EVENTUAL
● BEFORE_ON_PRIMARY

_FAILOVER (default)
● BEFORE
● AFTER
● BEFORE_AND_AFTER

(strongest)

● 0 - Disabled (default)
● 1 - READ (SELECT and BEGIN/START

TRANSACTION).
● 2 - UPDATE and DELETE;
● 3 - READ, UPDATE and DELETE;
● 4 - INSERT and REPLACE;
● 5 - READ, INSERT and REPLACE;
● 6 - UPDATE, DELETE, INSERT and

REPLACE;
● 7 - READ, UPDATE, DELETE, INSERT

and REPLACE;
● 8 - SHOW
● 9 - READ and SHOW
● 10 - UPDATE, DELETE and SHOW
● 11 - READ, UPDATE, DELETE and

SHOW
● 12 - INSERT, REPLACE and SHOW
● 13 - READ, INSERT, REPLACE and

SHOW
● 14 - UPDATE, DELETE, INSERT,

REPLACE and SHOW
● 15 - READ, UPDATE, DELETE, INSERT,

REPLACE and SHOW (strongest)

31Database ops, your way 31

Causality

-- client 1
> SET SESSION wsrep_sync_wait=2;
> UPDATE accounts SET balance=balance+100 WHERE id=1;
> SET SESSION wsrep_sync_wait=0;

-- client 2
> SET SESSION wsrep_sync_wait=1;
> SELECT balance FROM accounts WHERE id=1;
> SET SESSION wsrep_sync_wait=0;

-- client 1
> SET @@SESSION.group_replication_consistency= 'BEFORE_AND_AFTER';
> UPDATE accounts SET balance=balance+100 WHERE id=1;
> exit

-- client 2
> SET @@SESSION.group_replication_consistency= 'BEFORE_AND_AFTER';
> SELECT balance FROM accounts WHERE id=1;
> exit

MySQL Group Replication Galera Cluster

-- client 1
> SET SESSION wsrep_sync_wait=14;
> START TRANSACTION;
> SELECT balance FROM accounts WHERE id IN (1,2);
> UPDATE accounts SET balance=balance+100 WHERE id=1;
> UPDATE accounts SET balance=balance-100 WHERE id=2;
> INSERT INTO logs(event) VALUES 'User 1 deposited 100';
> INSERT INTO logs(event) VALUES 'User 2 withdrawn 100';
> COMMIT;
> SET SESSION wsrep_sync_wait=0;

-- client 1
> SET @@SESSION.group_replication_consistency= 'BEFORE_AND_AFTER';
> START TRANSACTION;
> SELECT balance FROM accounts WHERE id IN (1,2);
> UPDATE accounts SET balance=balance+100 WHERE id=1;
> UPDATE accounts SET balance=balance-100 WHERE id=2;
> INSERT INTO logs(event) VALUES 'User 1 deposited 100';
> INSERT INTO logs(event) VALUES 'User 2 withdrawn 100';
> COMMIT;
> exit

Wait for all nodes to sync first. Other writes will be blocked.
This can result in higher latency for the next writesets.

32Database ops, your way 32

Non-Sequential Auto Increment

id | data | value
---+------+------
 1 | abc | 123
 4 | def | 456
 7 | hij | 479

To avoid primary key (PK) collisions for
multi-primary replication:

● Galera:

○ Uses auto-increment offset
algorithm:
auto_increment_increment,
auto_increment_offset

● MGR:

○ Uses a slightly different approaches:
group_replication_auto_increm

ent_increment=7

○ AUTO_INCREMENT is sequential in
single-primary mode.

id | data | value
---+------+------
 1 | abc | 123
 4 | def | 456
 7 | hij | 479
 8 | klm | 111

id | data | value
---+------+------
 1 | abc | 123
 4 | def | 456
 7 | hij | 479
 8 | klm | 111
 9 | nop | 134

id | data | value
---+------+------
 1 | abc | 123
 6 | def | 456
11 | hij | 479

id | data | value
---+------+------
 1 | abc | 123
 6 | def | 456
11 | hij | 479
13 | klm | 111

id | data | value
---+------+------
 1 | abc | 123
 6 | def | 456
11 | hij | 479
13 | klm | 111
15 | nop | 134

1. Insert 3
records on

db1

2. Insert 1
record on

db2

3. Insert 1
record on

db3

1. Insert 3
records on

db1

2. Insert 1
record on

db3

3. Insert 1
record on

db5

33Database ops, your way 33

Online Schema Upgrade (DDL)
Cluster type OSU method Example steps Remarks

Galera Cluster

Total Order Isolation
(TOI) > ALTER TABLE ..

● Default DDL method.
● DDL is processed in the same order

regarding other transactions,
guaranteeing data consistency.

● This will block whole cluster (pause)
until the operation completes.

Rolling Schema
Upgrade (RSU)

> SET wsrep_osu_method='RSU';
> ALTER TABLE ..
> exit
repeat on the next node, one
node at a time

● DDL processing is only done locally
on the node, and the user needs
perform the changes manually on
each node.

Non-Blocking
Operation (NBO)

> SET wsrep_osu_method='NBO';
> ALTER TABLE ..

● Similar to TOI, but only perform
metadata lock (not cluster-wide).

● Only block the table that being
altered.

MGR has no special control over schema upgrade operation. Perform DDL only in single-primary cluster mode or ensure no DML
running against the table while performing DDL operation in multi-primary cluster.

34Database ops, your way

Example
Architecture

35Database ops, your way 35

MySQL Group Replication
with ProxySQL

db1
(primary)

Apps/
Clients

db2
(primary)

Load balancer
(ProxySQL)

Load balancer
(ProxySQL)

db3
(primary)

VIP

Group replication (multi-primary mode)

RO RORW

● Apps/clients connect to the database via a
load balancer (ProxySQL) - port 6033

● 2 load balancers tie with a virtual IP address
(VIP) on a separate tier

● ProxySQL performs read-write splitting,
forwarding writes to only one primary node.
Reads will be distributed among all available
nodes.

RW

36Database ops, your way 36

MySQL InnoDB
Cluster

db1
(primary)

Apps/
Clients

db2
(replica)

Load balancer
(MySQL Router)

Load balancer
(MySQL Router)

db3
(replica)

VIP

Group replication (single-primary mode)

RO RORW MySQL
Shell

● Apps/clients connect to the database via a load
balancer (MySQL Router):
○ RW - port 6446
○ RO - port 6447

● 2 load balancers tie with a virtual IP address (VIP)
on a separate tier

● MySQL Router forwards the connections to the
respective backends:
○ Port 6446 - to the primary
○ Port 6447 - to the replicas

● MySQL Shell - automates cluster creation,
configuration validation, node provisioning,
distributed recovery, failover coordination,
metadata management, and integration with
MySQL Router.

RW RO

37Database ops, your way 37

MySQL InnoDB ClusterSet

db1
(primary)

Apps/
Clients

db2
(replica)

Load balancer
(MySQL Router)

Load balancer
(MySQL Router)

db3
(replica)

VIP

Group replication (single-primary mode)

RO RORW MySQL
Shell

RW RO

db4
(replica)

Apps/
Clients

db5
(replica)

Load balancer
(MySQL Router)

Load balancer
(MySQL Router)

db6
(replica)

VIP

Group replication (single-primary mode)

RO RO

RW

RW RO

Asynchronous replication

RO

38Database ops, your way 38

Percona XtraDB
Cluster with
ProxySQL

db1
(primary)

Apps/
Clients

db2
(primary)

Load balancer
(ProxySQL)

Load balancer
(ProxySQL)

db3
(primary)

VIP

Galera replication

RO RORW

● Apps/clients connect to the database via
a load balancer (ProxySQL) - port 6033

● 2 load balancers tie with a virtual IP
address (VIP) on a separate tier

● ProxySQL performs read-write splitting,
forwarding writes to only one primary
node. Reads will be distributed among
all available nodes.

RW

39Database ops, your way 39

MariaDB Cluster
with MaxScale

db1
(primary)

Apps/
Clients

db2
(primary)

Load balancer
(MaxScale)

Load balancer
(MaxScale)

db3
(primary)

VIP

Galera replication

RO RORW

● Apps/clients connect to the database via
a load balancer (MaxScale) - port 4006

● 2 load balancers tie with a virtual IP
address (VIP) on a separate tier

● MaxScale performs read-write splitting,
forwarding writes to only one node.
Reads will be distributed among all
available nodes.

RW

40Database ops, your way

Use Cases

41Database ops, your way 41

MySQL Group Replication
● Suitable for standard online transactional processing (OLTP), with high availability requirements and small

writes per transaction.

● If you need a multi-master database solution run on Windows, Solaris or MacOS (MariaDB also support
Windows).

● “Official MySQL” integrated solution. If you need Oracle's brand and support for your database needs.

● If you are required to use enterprise features like Enterprise Backup (MEB), Enterprise Audit, Enterprise
Firewall, Enterprise Encryption, Transparent Data Encryption, Enterprise Authentication plugins, etc.

● If you need to communicate using X protocol (33060), AdminAPI, etc.

● If you want to have WAN replication using ClusterSet (single-writer setup).

● Safety over performance. MGR is stricter which means less weird edge cases.

● Mostly read-intensive workloads.

42Database ops, your way 42

Galera Cluster

● Best for heavy online transactional processing (OLTP), with high availability requirements and small writes
per transaction. E.g, e-commerce, ticketing systems, etc.

● If you want a more relaxed MySQL compatibility and highly customizable topology configuration.

● If you need to communicate using X protocol (33060), use Percona XtraDB Cluster. MariaDB Cluster only
supports the classic MySQL protocol (3306).

● If you want to have multi-master WAN replication between sites. MGR only supports single-writer for InnoDB
ClusterSet.

● Generally better replication performance if compared to MGR.

43Database ops, your way 43

Comparison: MGR vs Galera Replication
Aspect MySQL Group Replication Galera Replication

Multi-master support

● Designed with single-primary mode as the
default.

● Multi-primary is "best effort", not optimized
for conflict-heavy workloads.

● Built for true multi-primary.
● Use deterministic global assignment

via increments.

Group communication ● GCS (Paxos algorithm) ● Virtual synchrony QoS Totem
Single-ring Order Protocol

InnoDB ● Use InnoDB High Priority Transaction ● Patch MySQL to kill transaction

State Transfer
● SST: CLONE plugin
● IST: binary logs (it is called Automated

Distributed Recovery)

● SST: mysqldump/rsync/Percona
Xtrabackup/MariaDB backup

● IST: Galera cache (gcache)

Monitoring ● Performance_schema ● show status like 'wsrep%';

Arbitrator ● Not supported. Must be a DB node. ● garbd (vote-only, no data)

44Database ops, your way

Best Practices

45Database ops, your way 45

Best Practices
Recommendation Description

3 nodes + 1 read-only replica Set up a read-only replica (asynchronous replication) for heavy read-only workloads like
backups, analytics and reporting. Let the cluster focus on OLTP performance.

Use load balancer

● ProxySQL for Percona XtraDB Cluster and Group Replication
● MariaDB MaxScale for MariaDB
● MySQL Router (part of MySQL InnoDB Cluster)
● HAProxy
● Keepalived provides virtual IP address between multiple load balancers

Enable binary logging on all nodes Galera Cluster does not have this enabled by default. Binary logging allows point-in-time
recovery (PITR) and possibility to scale out with read-only replica.

<5 ms strongly recommended The lower the network latency, the better. If higher than 5 ms, most likely asynchronous
replication performs or tolerates better.

Single writer Only one primary processing all writes, to reduce certification failure rates. More predictable
performance. Reads can be scaled easily.

46Database ops, your way 46

Common Misconceptions [1/2]
Misconception Reality

Adding more database servers will scale up the
write performance

Galera Cluster cannot scale out writes to the same degree as it scales reads,
because all writes must be applied to all nodes to maintain consistency.

2 x MySQL hosts with ring replication is a
multi-primary replication

2 x MySQL with ring replication is primary-to-primary replication. It does not have
conflict resolution, failure detection and group membership control.

Any database table can be used in MGR/Galera.
Only InnoDB or XtraDB storage engine with a primary key for proper replication.
Non-transactional storage engines like MyISAM are not supported and tables
without a primary key can cause issues.

Restoring a database into the cluster is faster than
into a standalone node

Restoring a database into a running cluster is significantly slower because every
node must receive and process the changes to stay synchronized.

Galera Cluster uses MySQL binlogs for Galera
replication

Galera Cluster does not use the standard MySQL binary log for replication; it uses
its own write-set replication API. MGR uses the standard MySQL binary log.

47Database ops, your way 47

Common Misconceptions [2/2]
Misconception Reality

Large transactions are not an issue in Galera
Cluster.

Large transactions can cause performance problems, including conflict rates, increased
memory usage, and cluster freezing.

MariaDB is 100% compatible with MySQL.
They have started to diverge since MariaDB 5.5, only compatible via MySQL classic
protocol (3306). MySQL has introduced a new X protocol (33060), where new features
like Group Replication and MySQL Shell are built on.

If my network RTT is 100ms, the cluster can only
perform 10 writes/second.

In a transaction, you can have multiple writes per transaction commit. If the transaction
has 10 writes (INSERT/UPDATE/DELETE), you can now run 100 writes/s.

I can perform schema change on my cluster
whenever I like.

DDL statements (ALTER/CREATE/DROP/TRUNCATE) are replicated differently in
MGR/Galera. The certification process does not certify DDL. It just orders it to be
executed at the same ordering on every member. DDL will lock the whole cluster
(read-only, can't write until the operation completes).

All queries (DDL, DML, DCL) are replicated and
certified as a writeset.

Only DML write queries (INSERT, UPDATE, DELETE, REPLACE) are replicated and
certified in writesets. DDL and DCL are replicated as STATEMENT.

48Database ops, your way 48

Summary
● Multi-primary is not a performance feature - It increases write availability, not throughput.

● Latency determines throughput.

● Conflicts shape scalability - Higher write concurrency increases certification conflicts and rollbacks.

● Consistency is strong, but conditional - Both MGR and Galera ensure consistent certified transactions, but
network issues can still cause divergence or flow-control stalls.

● MGR vs Galera in practice:

○ MGR: Stricter consistency handling, tighter MySQL integration, slower in multi-primary.

○ Galera: More mature multi-primary design, lower LAN latency, widely adopted if compared to MGR.

● Choosing the right one:

○ MGR for official MySQL environments, predictable certification behavior.

○ Galera for high-concurrency, low-latency clusters.

49Database ops, your way 49

Resources
● Online Schema Upgrade in MySQL Galera Cluster Using RSU Method

● Schema Upgrades in Galera Cluster – How to Avoid RSU Locks

● Online Schema Upgrade in MySQL Galera Cluster using TOI Method

https://severalnines.com/blog/online-schema-upgrade-mysql-galera-cluster-using-rsu-method/
https://severalnines.com/blog/schema-changes-galera-cluster-mysql-and-mariadb-how-avoid-rsu-locks/
https://severalnines.com/blog/online-schema-upgrade-mysql-galera-cluster-using-toi-method/

50Database ops, your way

51Database ops, your way 51Database ops, your way

Thank you!
The information contained in these documents is confidential, privileged and only for the information of the intended
recipient and may not be used, published or redistributed without the prior written consent of Severalnines AB.

