
DBaaS

WHITEPAPER

DIY
More so than ever, businesses 
need to ensure that their 
databases are resilient, 
secure, and always available 
to support their operations. 
Database-as-a-Service 
(DBaaS) solutions have 
become a popular way for 
organizations to manage 
their databases efficiently, 
leveraging cloud infrastructure 
and advanced set-and-forget 
automation.

However, consuming DBaaS 
from providers comes with 
many compromises. In 
this guide, we’ll show you 
how you can build your 
own flexible DBaaS, your 
way. We’ll demonstrate 

how it is possible to 
get the full spectrum of 
DBaaS capabilities along 
with workload access 
and portability, and avoid 
surrendering control to a 
third-party.

From architectural and design 
considerations to operational 
requirements, we’ll take you 
through the process step-
by-step, providing all the 
necessary information and 
guidance to help you build a 
DBaaS solution that is tailor-
made to your unique use case. 
So get ready to dive in and 
learn how to build your own 
custom DBaaS solution from 
scratch!

primary {
  "id": "1",
  "name": "db-node-1",
  "hostname": "mysql01.example.com",
  "ip_address": "192.168.1.101",
  "port": 3306,
  "database_name": "biling",
  "status": "Online",
  "uptime": "14 days, 6 hours",
  "version": "MySQL 8.0.26",
  "replication": {
    "role": "Primary",
    "replica_count": 2,
    "replica_status": "Synced"
  },
  "connections": {
    "current_connections": 25,
    "max_connections": 100
  },
  "performance_metrics": {

https://severalnines.com/


Section I: DBaaS as an implementation model� 4

Traditional DBaaS implementation model������������������������������������������������������������������������������������������������������������������������4

Sovereign DBaaS implementation model��������������������������������������������������������������������������������������������������������������������������5
•	 Markers of Sovereign DBaaS�����������������������������������������������������������������������������������������������������������������������������������6
•	 Principles of Sovereign DBaaS��������������������������������������������������������������������������������������������������������������������������������6

First principle: end-user independence�������������������������������������������������������������������������������������������������������������������������������������������������6
Second principle: environment / ecosystem agnosticism����������������������������������������������������������������������������������������������������������������7
Third principle: embracing open-source software (OSS)����������������������������������������������������������������������������������������������������������������7
Option 1: independent��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������8
Option 2: interdependent���������������������������������������������������������������������������������������������������������������������������������������������������������������������������8

Section II: DIY DBaaS in practice� 9

•	 Foundation points: DBaaS environment, elements and design principles�������������������������������������������� 10
Environment������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ 10
Elements������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 10
Platform�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 11
Compute������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 11
Storage���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 11
Networking�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 12
Design principles��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 12

DBaaS routines and blueprint: the Day 2 framework������������������������������������������������������������������������������������������������� 13
•	 Day 2 ops routines��������������������������������������������������������������������������������������������������������������������������������������������������� 13

Scaling and high availability������������������������������������������������������������������������������������������������������������������������������������������������������������������ 14
Monitoring and alerting��������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 14
Backups for onsite and offsite storage����������������������������������������������������������������������������������������������������������������������������������������������� 14
Point-in-time recovery����������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 14
Upgrading and patching�������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 14
Access control / user access������������������������������������������������������������������������������������������������������������������������������������������������������������������� 14
Data migration (on-premises to cloud)����������������������������������������������������������������������������������������������������������������������������������������������� 14

•	 Day 2 ops blueprint������������������������������������������������������������������������������������������������������������������������������������������������� 15
Platform architecture�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 15
Database provisioning����������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 15
Monitoring and alerting��������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 15
Backup and recovery�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 15
Scaling and high availability������������������������������������������������������������������������������������������������������������������������������������������������������������������ 15
Upgrade and patch management��������������������������������������������������������������������������������������������������������������������������������������������������������� 15
Security��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 16
API integration�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 16
Self-service user portal��������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 16
Solution spotlight — abstracting the event-driven architecture with Dapr��������������������������������������������������������������������������� 16

The Day 2 ops framework: operational guidelines������������������������������������������������������������������������������������������������������ 18
•	 Op 1 — Database provisioning and deployment������������������������������������������������������������������������������������������� 19
•	 Op 2 — Lifecycle management and high availability using an autopilot pattern������������������������������� 20

Health checks���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 22
Automated failover����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 23
Primary and replica node and cluster state examples:����������������������������������������������������������������������������������������������������������������� 24

•	 Op 3 — Observability���������������������������������������������������������������������������������������������������������������������������������������������� 26
Logs (syslog)����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 26



Metrics and events (Telegraf, other exporters)�������������������������������������������������������������������������������������������������������������������������������� 26
Observability spotlight: database query performance������������������������������������������������������������������������������������������������������������������ 30

•	 Op 4 — Backup and recovery������������������������������������������������������������������������������������������������������������������������������� 31
Data structures examples ���������������������������������������������������������������������������������������������������������������������������������������������������������������������� 32
Backup service architecture������������������������������������������������������������������������������������������������������������������������������������������������������������������� 35
Backup agent initialization and registration�������������������������������������������������������������������������������������������������������������������������������������� 38
The backup process���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 39
Restoring backups������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 43
Verifying backups�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 48

•	 Op 5 — Scaling��������������������������������������������������������������������������������������������������������������������������������������������������������� 48
•	 Op 6 — Upgrades and patching�������������������������������������������������������������������������������������������������������������������������� 50
•	 Op 7 — Access control and multi-tenancy������������������������������������������������������������������������������������������������������ 50

Access control��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 51
Multi-tenancy���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 51

•	 Op 8 — Data migration������������������������������������������������������������������������������������������������������������������������������������������� 53

Bringing Day 2 ops to life: a provisional architecture������������������������������������������������������������������������������������������������� 54
•	 Core services�������������������������������������������������������������������������������������������������������������������������������������������������������������� 54

Section III: abstracting the orchestration layer with Severalnines solutions� 57

ClusterControl: DB ops automated, just add VMs������������������������������������������������������������������������������������������������������� 57
•	 ClusterControl operational features������������������������������������������������������������������������������������������������������������������� 58
•	 ClusterControl architecture����������������������������������������������������������������������������������������������������������������������������������� 60

Overview������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ 60
Components������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ 61

CCX Sovereign: your DBaaS, in your cloud(s)��������������������������������������������������������������������������������������������������������������� 62
•	 CCX features�������������������������������������������������������������������������������������������������������������������������������������������������������������� 63

Supports hyperscalers, local clouds and private environments������������������������������������������������������������������������������������������������� 63
Set and forget database deployments����������������������������������������������������������������������������������������������������������������������������������������������� 63
Granular observability����������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 63
Automated backups���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 63
Scaling and storage management������������������������������������������������������������������������������������������������������������������������������������������������������� 63
Granular user management������������������������������������������������������������������������������������������������������������������������������������������������������������������� 63
Plug-and-play integrations�������������������������������������������������������������������������������������������������������������������������������������������������������������������� 63
Security��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 64

CCX Cloud: from Severalnines, run by Severalnines��������������������������������������������������������������������������������������������������� 65

Choosing the correct solution for your use case����������������������������������������������������������������������������������������������������������� 65

Wrapping up����������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 66



4

Section I: DBaaS as an 
implementation model

Although DBaaS is traditionally thought of as a business model whereby 
end-users consume databases from 3rd-party providers who manage their 
operations, DBaaS is an implementation concept at its core. Concepts, 
platforms, and tooling have continued to evolve, giving organizations more 
choices over how to implement their DB ops.

Traditional DBaaS implementation 
model
 
In a Traditional DBaaS model, the provider is responsible for the entire lifecycle 
of the data stack, including provisioning, configuration, monitoring, backup 
and recovery, and patching. It is useful for teams that are responsible for 
underlying products or projects, such as software applications, websites, or 
online services, and whose primary goal is to ensure that their business-critical 
services are managed and always fully operational.

The core characteristic of this model is its transfer of CAPEX to OPEX, i.e. 
customers can avoid the upfront capital expenses associated with buying and 
maintaining their data stack. Instead, they use metered services scaling up or 
down as needed. There are three general categories of provider: DB, cloud, and 
independent service vendors.

•	 DB vendor DBaaS refers to services provided by the creators and 
maintainers of the database software, such as MongoDB and Elastic. These 
providers offer fully managed services that are specifically designed to 
work with their own database software, making them a good choice for 
organizations that want to use those specific databases without the added 
complexity of managing the underlying infrastructure.

•	 Cloud vendor DBaaS, on the other hand, are services provided by cloud 
platform providers like Amazon Web Services (AWS), Google Cloud 
Platform, and Microsoft Azure. These services provide organizations 
with fully managed database services that run on their respective cloud 
platforms. Cloud vendor DBaaS offers a high degree of scalability, 
flexibility, and reliability, as well as easy integration with other cloud 
services.

•	 Independent service vendor (ISV) DBaaS refers to services provided by 
third-party vendors such as Severalnines, Instaclustr, Aiven, and others. 
These vendors offer fully managed services that support a variety of 
database engines, usually across multiple clouds (typically the big 3), 
providing organizations with more flexibility in their choice of database 
software and infrastructure provider.



replica {
  "id": "2",
  "node_id": "db-node-2",
  "hostname": "mysqlreplica01.
example.com",
  "ip_address": "192.168.1.102",
  "port": 3306,
  "database_name": "my_database",
  "status": "Online",
  "uptime": "7 days, 12 hours",
  "version": "MySQL 8.0.26",
  "master": {
    "master_node_id": "db-node-1",
    "master_hostname": "mysql01.
example.com",
    "master_ip_address": 
"192.168.1.101",
    "master_port": 3306,
    "replication_status": "Connected",
    "seconds_behind_master": 10

5

Sovereign DBaaS implementation 
model
A Sovereign DBaaS model differs from its counterpart in that it offers 
organizations complete control over their database layer operations, enabling 
internal DevOps or Infrastructure teams to automate their database layer 
operations using their own code, open-source tooling, and / or off-the-shelf 
solutions in a vendor-neutral environment.

The DBaaS platform still provides a self-service model for developers, 
enabling them to create, configure, and manage their own databases 
independently, enforcing security policies, backup and recovery procedures, 
and other governance and compliance requirements, ensuring that developers 
adhere to best practices and policies. It allows developers to deploy and 
consume databases efficiently while providing the infrastructure team with  
the ability to enforce policies and ensure compliance. 

The infrastructure can be hosted on-premises, in a colocation facility, or in a 
hyperscale cloud provider facility as infrastructure-as-a-service (IaaS), giving 
organizations the flexibility to choose where their data is stored and to change 
their choices at any time for any reason. In this model, the primary goal of 
DBaaS is to give developers autonomy, enforce processes, and allow them to 
deploy persistent resources with ease. 

A Sovereign DBaaS implementation 
offers ultimate control over all 
business risks related to data — it 
mitigates vendor, environment, and 
ecosystem lock-in, managed license 
instability, key person dependencies, 
data regulation changes, and cost 
unpredictability. By rendering 
organizations less reliant on 
external providers, it reduces 
the business risks associated 
with traditional DBaaS, such as 
regulatory compliance. 

Below we will briefly describe 
the markers and principles 
of a Sovereign DBaaS 
implementation. For more detail 
on these concepts, read our  
Sovereign DBaaS Guide.

https://severalnines.com/resources/whitepapers/developers-guide-to-sovereign-dbaas/


6

Markers of Sovereign DBaaS

•	 Control:
You are able to own and assert control over the data pipeline according to 
your needs through your DBaaS implementation — from the underlying 
infrastructure, databases and their operations, to workload location.

•	 Access
You have the level of access your use case requires to your data and the 
technologies that handle that data. You can access the data plane, the 
underlying infrastructure, and the data management system. You get 
root access, allowing you to install, configure, and manage your stack 
components.

•	 Portability
The traditional approach to DBaaS inevitably leads to organizations 
becoming wholly dependent on a service, effectively trapping them in a 
particular ecosystem. Conversely, being data sovereign means you aren’t 
married to a specific vendor or environment. You can efficiently and cost-
effectively move databases from one cloud environment to another, or from 
an on-prem to a cloud environment and vice versa with minimal difficulty. 

•	 Licensing stability
A fundamental principle of sovereign data is the ability to roll your own 
optimized DBaaS solutions without being subject to vendors’ licensing 
restrictions. You can include source-available options like licensed 
MongoDB and Elasticsearch that third-party service providers cannot.

•	 Budget efficiency
Third-party costs are difficult and sometimes impossible to model, not to 
mention expensive at scale. With Sovereign DBaaS, you can form a clear 
understanding of costs because you have greater visibility into and control 
over inputs, e.g. infrastructure, databases, and tools. You can better manage 
and track them because you can consolidate your database layer into a true 
single pane of glass. And you can implement FinOps practices and tools 
into your stack more precisely to help you better model and predict your 
spend.

Principles of Sovereign DBaaS
First principle: end-user independence

The first condition of end-user independence is full visibility into the database 
layer, including end-to-end visibility into the tech and software the DBaaS 
uses. Sovereign DBaaS can offer complete data transparency with no 
intermediaries (e.g., vendors) withholding information about the components 
and processes being used to implement the stack. Traditional DBaaS is a 
veritable black box — you can’t see into it, i.e. the data management software, 
security configurations, or privacy protocols, etc., just the output. 



7

From visibility, comes the second condition, control, which requires the following:

•	 DB and infrastructure access 
You can modify the database / infra configuration and everything that the 
configuration entails. This is made possible by the direct use of open-
source software, unmediated by a vendor’s implementation, enabling you 
to better tune your databases to support your workloads.

•	 Location choice 
You decide where and how data is processed and stored. For instance, you 
can place workloads with stringent requirements in one environment, such 
as on-premises, and those with fewer in another, such as public cloud. 
These requirements don’t just have to revolve around compliance and 
security, but performance, cost, and other variables that influence your 
workloads as well.

Second principle: environment / ecosystem agnosticism

Sovereign DBaaS enforces the idea of environment agnosticism and extends 
it to the ecosystem. It means that end-users have the freedom to choose 
different infrastructure environments and the ability to combine multiple 
underlying environments into a unified control plane. They get environment 
agnosticism – which enables location control. You can choose one environment 
or select from a mix of environments such as private cloud (e.g., VMware, 
Nutanix, OpenStack), public cloud (e.g. AWS, GCP, Azure, etc.), on-premises, 
co-location, and hybrid.  

Sovereign DBaaS means having the freedom to go beyond any one ecosystem. 
For example, AWS Outposts lets you run on-premises. However, this setup 
is not truly sovereign because, aside from the managed service aspect, you’re 
locked into the AWS ecosystem.

Third principle: embracing open-source software (OSS)

A crucial principle of Sovereign DBaaS is the unrestricted use of open-source 
software. OSS allows you to avoid many of the issues you see with proprietary 
cloud vendor solutions, such as vendor lock-in. You have the ability to freely utilize 
the best OSS databases available, without worrying about managed providers’ 
APIs, nomenclature and semantics, e.g. interacting with managed PostgreSQL 
from one provider is a different experience than another, or license changes that 
render a database unavailable for third-party offering, such as Elasticsearch. 

Additionally, when you buy a packaged solution from vendors, the database is 
more open-source adjacent, it’s tied to the infrastructure which they determine, 
often only available in one environment (often a handful of clouds), and you 
aren’t given full access to the database because of their SLA requirements. 
Open-source software also potentially unlocks cost efficiency because, a) 
it’s free, b) it decouples the database from the infrastructure, enabling you to 
place them where you want, and c) you have full access to be able to tune and 
optimize their configuration.  



8

DIY DBaaS options:  
independent or interdependent
There are several ways to approach creating a DBaaS, each with its own trade-
offs. Below, we delve into each option with recommendations and technical details 
to help you make the right choice for your organization.

Option 1: independent

This option involves procuring your own infrastructure, building custom software to 
handle each job within the DBaaS framework, and building a custom management 
layer to act as a control plane. You have complete control over your infrastructure 
and software but requires expertise and significant investment in time and resources.

Pros:
•	 Full control: You can tailor your solution to meet specific requirements .
•	 Sovereignty: You own your data, end-to-end.
•	 Intellectual property: Any custom software developed in-house remains your 

intellectual property.

Cons:
•	 Complexity: This approach requires widely varied expertise in hardware, 

networking, software development, and database management.
•	 Difficulty: Creating your own control layer software requires substantial effort.
•	 Maintenance overhead: You’re completely responsible for managing, securing, 

and updating your infrastructure.
•	 Cost: The initial investment and ongoing maintenance costs can be substantial.

Option 2: interdependent

This option offers a middle ground between buying a solution and building 
everything from scratch. In this approach, you would combine your choice of infra, 
code, and tooling with off-the-shelf software to act as the control plane.

Pros:
•	 Flexibility: Choose between cloud, on-premises, or hybrid environments.
•	 Simplified control plane management: Rather than building your own control 

plane, you can leverage existing software to provide a centralized interface for 
managing your database resources.

•	 Vendor-agnostic: The software can manage various database technologies, 
allowing you to mix and match as needed.

•	 Sovereignty: You own your data, end-to-end.

Cons:
•	 Partial lock-in: As always, introducing off-the-shelf components poses lock-in, 

however partial.
•	 Learning curve: You’ll need to become familiar with the features and 

capabilities of your stack and its components.
•	 Shared responsibility: While off-the-shelf components greatly simplify DBaaS 

management, the shared responsibility model continues. 
 



9

Section II:  
DIY DBaaS in practice
Creating a Do-It-Yourself Database as a Service (DIY DBaaS) platform is 
a significant endeavor that can provide a flexible and scalable solution for 
managing databases. There are more choices to be made here than in a 
"choose your own adventure" book. 

In our Developers Guide to Sovereign DBaaS, we cover each point with 
recommendations and technical detail. Here, we will discuss the actual 
building of your own Sovereign DBaaS from the ground up, from the 
fundamental points you need to consider when building a DBaaS to system 
design considerations (using Dapr to illustrate) and what a provisional 
architecture will actually look like when developed. 

To determine our architectural choices, we will consider this prospective 
DBaaS through the lens of Day 2 operations so that we are left with a  
reliable and scalable DBaaS.

The independent route entails procuring your own infrastructure, developing 
the software and managing the entire solution yourself giving you full control, but 
also all that it entails. The interdependent one gives you greater flexibility and faster 
time-to-value by allowing you to incorporate off-the-shelf infra and components 
but still presents some lock-in and can require additional knowledge in handling the 
components themselves. 

Now that we understand that DBaaS is an implementation model, the differences 
between the traditional and Sovereign models, and the pros and cons of going the 
independent or interdependent route when choosing the latter, let’s get to the actual 
building of your platform, starting with environment, elements and design principles.

https://severalnines.com/resources/whitepapers/developers-guide-to-sovereign-dbaas/


10

Foundation points: DBaaS environment, elements  
and design principles
 
Environment

Where your DBaaS will live breaks out into three categories that can be 
selected for use as mono-environments or as hybrid ones: 

•	 Physical (owned)
Physical locations offer more control over the infrastructure but are 
often implemented regionally due to cost and may require additional 
maintenance and security measures.

•	 Co-location (leased)
Leasing space in one (or more) data centers allows you to own, provide and 
configure your own hardware as well as benefit from the management of 
the hardware by experienced staff.

•	 Public cloud (PAYG)
Cloud-based solutions provide scalability and lower upfront costs, but 
you’ll need to trust a third-party provider with your data, as well as a 
higher likelihood of using proprietary technologies.

Choosing your environment is no easy decision, as each has its own up- and 
downsides. For instance, your own data centers give you maximum control, 
but the capital and operational expenses can be prohibitively substantial, 
especially if you have a geographically spread customer base. Going with a 
public cloud environment provides maximum flexibility and transfers CAPEX 
to OPEX but then the providers’ shared responsibility model may represent 
an intolerable risk profile, not to mention potential regulatory issues that are 
constantly shifting, especially with regard to data sovereignty. 

And then there is the co-location facility, which could represent the ideal 
middle ground because you’re mitigating CAPEX while enjoying some of the 
control features of the on-prem environment along with the management and 
elasticity benefits of the public cloud. Either way, it is likely that you will be 
best served implementing a hybrid model.

Elements

The environment you ground your DBaaS in and the components you use to 
actually animate it influence one another, so it’s important to consider the 
latter while you are determining where you want to host it. Ultimately, you 
want to weave in sovereign principles so that you are environment agnostic, 
i.e. you want to ensure that whatever elements you choose and however you 
implement them are not absolutely dependent on the environment/s. Let’s 
make a quick pass over the fundamental elements you’ll use to actually create 
and operationalize the service itself:



11

Platform

The platform, e.g. Kubernetes and OpenStack, will not only dictate how 
you design your DBaaS but influence how you manage and orchestrate its 
underlying components.

Kubernetes continues to increase in adoption and is available on almost every 
public cloud provider and all have the same core APIs available as the open-
source tool. This also allows K8s to be installed on-prem or even on developer 
machines for reproducible environments.

The growth of Kubernetes in the past decade makes it a fairly common skill 
among developers; ensuring that organizations can grow their experienced 
engineering teams with the right skills, instead of asking for experience with 
a particular cloud or subset of features that are inconsistently named and not 
equally implemented between providers.

Compute

•	 Bare metal
These are physical servers dedicated entirely to your DBaaS, offering 
maximum performance and control. However, they can be more expensive 
and harder to scale.

•	 Virtual machines (VM) 
VMs run on shared hardware, offering a balance between performance 
and cost. They are popular because they are a standard compute resource 
in public clouds and leased data centers, which helps in avoiding vendor 
lock-in. Additionally, VMs can be easily scaled but their performance may 
be affected by other VMs running on the same host.

•	 Containers
Containers are lightweight and fast, making them ideal for quickly 
deploying and scaling instances. They can be easily managed using 
platforms like Kubernetes but may have limitations in terms of isolation 
compared to VMs.

Storage

Storage types

•	 Attached: This refers to storage directly connected to the server or 
VM, offering high performance but limited scalability.

•	 Network: Network storage is accessed over a network, providing 
greater scalability but potentially lower performance due to latency.

•	 Hot/Cold/Warm: These terms refer to the speed and accessibility of 
data. Hot storage is readily accessible and offers high performance, 
while cold storage is slower and more cost-effective for long-term 
data storage. Warm storage is a middle ground between the two.

https://kubernetes.io/
https://www.openstack.org/


12

Storage configuration options

•	 Clustered access filesystems: Clustered filesystems allow multiple 
servers to access the same storage simultaneously, improving 
redundancy and fault tolerance. 

•	 Single-access filesystems are the most common option and are 
designed to be accessed by one server at a time.

Networking

•	 Public/Private: Public networks are accessible to anyone, while private 
networks are restricted to specific users or devices. Your choice depends on 
the level of security and access control you require.

•	 VPN/VPC: These are different methods of creating secure connections 
between networks or devices. VPNs (Virtual Private Networks) and VPCs 
(Virtual Private Clouds) create secure connections between networks, 
while Wireguard is a modern VPN protocol that offers improved 
performance and security.

Design principles

To build a system that aligns with Day 0 requirements and user objectives, 
we need a high-level system architecture that encapsulates a set of crucial 
architectural decisions, which will serve as the cornerstone of our design, 
fostering a platform that is agile, responsive, and efficient. While we will not 
delve deeply into every aspect, these principles will guide the architectural 
choices we make to build a modern system:

•	 Cloud native
Embrace cloud-native principles, leveraging the inherent advantages 
offered by cloud computing. Prioritize scalability, resilience, agility, and the 
concept of immutable infrastructure. By harnessing cloud services, we can 
optimize performance and cost-efficiency.

•	 Event-driven
Adopt an event-driven architecture to ensure loose coupling, scalability, 
and real-time responsiveness. This approach empowers us with the 
flexibility to construct and maintain distinct services, enhancing modularity 
and facilitating seamless communication through events.

•	 Independently deployable services
Clearly define the responsibilities and boundaries of each service to foster 
agility, isolation, and straightforward development and deployment of new 
features.

•	 Service discovery
Implement service discovery mechanisms to enable services to dynamically 
locate and communicate with one another. Eliminate the need for 
hardcoding network addresses or specific locations, promoting adaptability 
and flexibility in the system.

https://www.wireguard.com/


13

•	 Agent-based
Embrace an agent-based approach to infuse the system with autonomous 
edge intelligence and decentralized decision-making. This may involve 
the integration of AI and other intelligent agents, which can operate 
independently to enhance system performance and adaptability.

•	 Monitoring and observability
Prioritize comprehensive monitoring and observability by implementing 
continuous and systematic data collection and metrics tracking. This 
data-driven approach is essential for gaining insights into the behavior 
and performance of the platform, facilitating issue identification, resource 
optimization, and reliability assurance.

•	 DevOps and CI/CD
Seamlessly integrate DevOps practices and continuous integration 
and continuous deployment (CI/CD) pipelines into the development 
and deployment workflows. This streamlined approach ensures rapid 
development cycles, rigorous testing, and efficient delivery of new features 
and updates.

Now that we understand the environment, elements and underlying principles 
that you will use to inform your architectural decisions, you need a rubric for 
making the practical decisions while you build. We will start with the end 
state, what does day 2 look like? 

To determine that, we need to know the purpose of what we’re trying to build. 
Implementation details will vary, but there is usually a fundamental ground 
truth that every implementation builds off of. For a DBaaS, we’re ultimately 
trying to achieve efficient, reliable database operations at scale through the 
use of automation.

Utilizing a Day 2 approach is practical as it allows you to focus on automating 
operational tasks and gradually build a comprehensive, robust, extensible 
platform.

DBaaS routines and blueprint:  
the Day 2 framework
What are Day 2 operations? They are 
the ongoing and challenging aspects of 
maintaining the reliability, performance, 
and security of your databases in a 
production environment. Here’s a closer 
look at some of the essential ‘Day 2’ 
routines:

 



14

Day 2 ops routines
Scaling and high availability
As your data and workload grow, scaling is necessary to ensure performance. 
Implement mechanisms for horizontal scaling (adding more nodes or instances) 
and vertical scaling (increasing resources on existing nodes). Ensure database 
high availability by leveraging monitoring and alerting tools alongside 
automated failover and recovery mechanisms.

Monitoring and alerting
Continuous monitoring of your databases is crucial to identify performance 
issues, bottlenecks, and potential security threats. Implement monitoring 
agents that collect data on various aspects of database health and 
performance.

Set up alerts and notifications to proactively detect and respond to potential 
issues. Alerts should be configured for specific thresholds and critical events.

Backups for onsite and offsite storage
Regular backups are essential to protect your data. Implement automated 
backup processes with options for both onsite and offsite storage to ensure 
data recovery in case of data loss or disasters.

Point-in-time recovery
Point-in-Time Recovery allows you to restore a database to a specific moment 
in time. Develop mechanisms to support this, especially for databases with 
stringent recovery point objectives (RPOs).

Upgrading and patching
Stay up-to-date with the latest patches and upgrades for your database 
software. Develop a process for testing and rolling out updates, ideally with 
minimal downtime.

Access control / user access
Control and manage user access to databases by implementing robust access 
control measures. This includes user authentication, authorization, and role-
based access controls.

Data migration (on-premises to cloud)
If your databases need to migrate from on-premises to the cloud or between 
cloud providers, a strategy is needed and tools for efficient data migration 
while minimizing downtime and data loss.

‘Day 2’ operations require ongoing attention, and it’s advisable to use 
automation wherever possible to streamline them. Additionally, documenting 
processes and creating runbooks will help ensure clear procedures to follow in 
various scenarios. 



15

Day 2 ops blueprint

Here’s a high-level blueprint for developing a DBaaS from a Day 2 operational 
aspect:

Platform architecture
Beginning with the overall vision for what type of system we want to build 
starts with "Day 0" requirements and user objectives, as serviced by the 
following components:

•	 Control plane
The central management and orchestration layer.

•	 Data plane 
The layer responsible for hosting and managing the actual databases.

•	 Agents 
Agents installed on database nodes for monitoring, patching, and 
management.

•	 Authentication and authorization 
Implement user access controls and security measures.

Database provisioning
Develop a provisioning system that allows users to create new database 
instances and use various vendors.

Monitoring and alerting
Implement monitoring agents that collect data on database performance, 
resource utilization, and security. Set up alerts to notify administrators or users 
of potential issues.

Backup and recovery
Create a backup and recovery system that automates regular backups, 
retention policies, and restoration processes.

Scaling and high availability
Design mechanisms for horizontal scaling and high availability to ensure 
database performance and uptime.

Upgrade and patch management
Develop a system for managing database software updates and patches, 
including rolling upgrades.



16

Security
Implement security measures, such as access controls, encryption, and 
vulnerability assessments, to protect data and ensure compliance.

API integration
Consider integrating your platform with other tools and services, such 
as container orchestration platforms, identity management systems, and 
monitoring solutions.

Self-service user portal
Create a user-friendly web portal or API that allows users to provision and 
manage databases, set configurations, and access performance metrics.

Lastly, because we are proposing a loosely decoupled event-driven services 
architecture, we will leverage a Dapr runtime (profiled below), which provides 
building blocks that are designed to simplify common challenges in application 
development and services architecture.

Solution spotlight — abstracting the event-driven  
architecture with Dapr

Dapr, which stands for Distributed Application Runtime, is a versatile and 
event-driven runtime designed to simplify the development of applications. 
Originally incubated by Microsoft, it has since become a part of the Cloud 
Native Computing Foundation (CNCF), underscoring its relevance and adoption 
in the cloud-native ecosystem. 

Dapr offers a collection of building blocks that empower developers to 
create resilient, stateless, and stateful applications more easily. The blocks 
are fundamental components that streamline various aspects of application 
development and include:

•	 Service invocation
Simplifies the process of invoking services, whether they are running 
locally or remotely, without having to deal with complex service discovery 
or network communication logic.

•	 State management
Offers a straightforward and consistent way to manage application state, 
regardless of where it’s stored (e.g., databases, caches, or file systems). 
This makes building stateful applications more intuitive.

•	 Publish-subscribe messaging
Enables seamless communication between application components using 
publish-subscribe patterns, enhancing event-driven architecture and loose 
coupling.

 



17

•	 Resource bindings
Abstracts the integration with external resources such as databases, 
message queues, and storage systems. This allows developers to access 
these resources without worrying about the underlying specifics.

•	 Secrets management
Provides a secure and unified approach to manage application secrets, 
ensuring that sensitive information like API keys and passwords remain 
protected.

•	 Actors
Implements the actor model to simplify the development of stateful 
applications by offering a higher-level, object-oriented abstraction for 
managing state and processing.

•	 Virtual actors
Extends the actor model by introducing the concept of virtual actors, which 
can be used to build stateful, distributed, and scalable applications with 
automatic sharding and activation.

•	 Observability
Enhances application monitoring and debugging by offering built-in 
instrumentation and observability features that facilitate the collection of 
metrics, traces, and logs.

•	 Bindings for external systems
Provides a variety of pre-built bindings for popular external systems, 
enabling easy integration with services like Azure Functions, AWS Lambda, 
and more.

•	 Middleware
Offers middleware components that can be used to enhance request 
and response processing in the application, supporting features like 
authentication, retries, and tracing.

By using Dapr components, developers can focus on building application 
logic rather than dealing with the intricacies of distributed systems, making it 
easier to create robust, cloud-native applications that can scale and adapt to 
changing requirements.



18

Dapr is platform-agnostic, allowing you to run your applications in various 
environments, including local development machines, Kubernetes clusters, and 
other hosting platforms where Dapr is installed — this versatility gives you 
the flexibility to create adaptable services that can operate seamlessly in both 
cloud and edge computing scenarios.

Naturally, you don’t have to incorporate any particular solution into your stack 
and you could build everything from scratch; but, that is not feasible for most 
or even preferable for any. The goal is not to remove all dependencies, which is 
impossible, but to weave sovereignty into your stack so you can configure and 
move your workloads at will. 

Therefore, pick and choose off-the-shelf solutions where and when they make 
sense. Now that you understand the Day 2 Ops framework and what the high-
level blueprint looks like when building from it, we can look at implementing 
the specific ops in detail.

The Day 2 ops 
framework: 
operational 
guidelines
The operational routine that kicks off 
the DBaaS ops milieu is provisioning 
and deployment. At its most 
essential, it involves provisioning the 
infrastructure resources that your 
database will live on and deploying 
your database atop them.



19

Op 1 — Database provisioning and deployment

Provisioning can be performed in on-prem, cloud and hybrid environments, and 
should include:

•	 Resource allocation
Determining and assigning the necessary hardware resources (such as 
servers, storage, and networking equipment) and software resources (such as 
operating systems and databases) to support a specific application or service.

•	 Configuration
Defining the configuration settings, security policies, and performance 
parameters required for the infrastructure components. This may involve 
setting up virtual machines, configuring network devices, and tuning 
hardware to meet specific requirements.

•	 Software installation
Installing and configuring the necessary software components, including 
application software, middleware, and system software. This step ensures 
that all required software dependencies are in place.

•	 Network configuration
Configuring network connectivity, including IP addresses, subnets, firewall 
rules, load balancers, and other network-related settings to ensure that 
applications and services can communicate effectively.

•	 Security setup
Implementing security measures such as access control, encryption, 
authentication, and auditing to protect the infrastructure and data from 
unauthorized access and potential threats.

•	 Monitoring and management
Integrating tools and systems for monitoring and managing the 
infrastructure. This includes setting up monitoring agents, alerts, and 
performance tracking to ensure the infrastructure operates efficiently.

•	 Scaling and elasticity
Depending on the requirements, provisioning may include configuring the 
infrastructure for scalability and elasticity, enabling it to handle changing 
workloads and resource demands effectively.

•	 Automation
In modern IT operations, automation plays a significant role in 
infrastructure provisioning. Tools like configuration management systems 
and infrastructure as code (IaC) scripts enable automated, repeatable 
provisioning processes.

•	 User interfaces
Interfaces fall under three types: CLIs, APIs, and GUIs. Including all three 
is standard for retail DBaaS. For an internal DBaaS, your customers will 
be your own engineering teams, so providing an API-first approach when 
developing the platform will be key.



20

The ‘Infrastructure Service’ is primarily responsible for provisioning virtual 
machines or "system containers" that form the basis for the database nodes. 
These virtual machines are created from preconfigured image templates 
preinstalled with the exact software versions of database vendor packages and 
agents that provide features such as backups and restore, automatic failover, 
upgrades, monitoring, and more. Additionally, the Infrastructure Service 
handles the provisioning and management of other resources in private or 
public cloud infrastructure, which includes virtual private networks, storage 
volumes, and their continued maintenance.

The ‘Service Catalog Service’ provides a range of preconfigured and user-
generated image templates used for launching a "Database Service." Its 
primary aim is to maintain consistency in the deployment and management of 
database services.

A prospective, developer-friendly provisioning workflow could look like this: 
Infrastructure teams can integrate their DBaaS with existing Git workflows, 
which means no additional users to manage, no additional interfaces to 
develop or services to deploy. 

Developers would request a new resource by creating, or modifying, a 
Terraform plan that is reviewed by a member of the Infrastructure team and 
deployed, once approved. Monitoring is automatically set up and automated 
rules are put in place for teams and projects to ensure the correct hardware, 
regions and security rules are used.

Op 2 — Lifecycle management and high 
availability using an autopilot pattern

Utilizing a default "autopilot" pattern with a set of generic handlers is a 
structured and flexible approach to managing the lifecycle and health of 
database servers, for example with MySQL primary-replica deployments. 

Below is a breakdown of the key handlers and their functions:



21

•	 preStart
This handler is invoked before starting the targeted service or application. 
It serves as a preparatory phase, allowing for any necessary actions or 
configurations to be applied in advance of service initiation.

•	 health
The health handler performs periodic health checks on the service or 
application. It assesses the system’s well-being, ensuring that it is in a 
good and operational state. Health checks can include checks for database 
connectivity, resource availability, or other crucial factors.

•	 onChange
The onChange handler is called when changes occur in a subscribed state. 
This handler is instrumental in maintaining real-time responsiveness and 
adaptability. It can trigger actions in response to dynamic changes in the 
environment, such as failover events in a primary-replica cluster.

•	 preStop
Before stopping the service or application, the preStop handler is executed. 
It provides an opportunity to perform any cleanup or finalization tasks to 
ensure a graceful shutdown.

•	 postStop
After the service or application has been successfully stopped, the 
postStop handler is invoked. This phase can be used for additional cleanup 
or post-shutdown activities.

The beauty of this approach is its flexibility. Each handler can be configured 
to run any external application or script, and this configuration is simplified 
through the use of YAML. This means that your system can adapt and evolve 
by defining custom actions or processes for each handler, tailoring them to 
your specific needs.

Classic primary-replica deployments, grouped into clusters with unique global 
names, ensures that the approach is well-suited for managing database 
service replication, high availability, and dynamic changes.

Bootstrapping a database node

The subsequent steps provide an overview of what the agents undertake to 
determine their roles in a cluster setup. 

Upon startup, the agent will do the following actions:

1.	 Subscribe to state changes for the cluster
2.	 Get the latest stored cluster state and check if there is a primary node

•	 Start the database node as a primary if there is no cluster state or if 
there is no active primary  

•	 Attain a lock to update the cluster state so no other nodes can 
update it until this node has become the primary

•	 Check if there is a backup that should be used to restore/rebuild the 
node otherwise just initialize as new primary 

3.	 Update the cluster state again with new updated state, i.e., the primary 
node and replication info 



22

4.	 Unlock the cluster state so that other nodes can write to it
5.	 Write a ‘lock file’ on the host which indicates that it has been initialized / 

bootstrapped
6.	 Mark the node as primary and post a cluster state change event for the 

cluster
7.	 Primary node is now active and running

Replicas will bootstrap with a similar process as the primary:

1.	 Subscribe to state changes for the cluster 
2.	 Get the latest stored cluster state and check if there is a primary node
3.	 Wait until the cluster state lock is unlocked. Wait for a new cluster state 

change event.
4.	 Get the primary node and replication info from the cluster state
5.	 Check if there is a backup that should be used to restore/rebuild the node 

otherwise just initialize as new replica
6.	 Start the database node as a replica and set up replication with the 

primary node 
7.	 Mark the node as replica, lock and update the cluster state with the 

replica node info
8.	 Write a ‘lock file’ on the host which indicates that it has been initialized / 

bootstrapped
9.	 Unlock the cluster state so that it can be written to
10.	 Replica node is now active and running

Health checks

The health handler plays a pivotal role in determining whether the node should 
undergo the bootstrapping process or proceed with standard health checks.

•	 Check if this node has been bootstrapped/initialized by searching for 
the ‘lock file’ on the host:
If not found, initiate the node bootstrap as previously demonstrated.

•	 Perform regular health checks at specified intervals:
Monitor the node’s health by assessing its process status, connection 
status, and replication status.

•	 Update the cluster and node’s state with a Time-to-Live (TTL) of, for 
example, 10 seconds:
POST requests to update the state, including cluster state and individual 
node state.

•	 If I am the primary node, update the primary state before the TTL 
expires:
POST request to update the primary state of the node.

•	 If I am the primary node, publish any state changes that may affect the 
replicas:
POST request to broadcast state changes that could impact replica nodes.



cluster {
  "id": "1",
  "namespace": "production",
  "project": "bluebird",
  "cluster_name": "mybillingapp",
  "last_updated": "1696494655",
  "ttlseconds": "10",
  "nodes": [
    {
      "id": "1",
      "name": "db-node-1",
      "status": "Online",
      "ip_address": "192.168.1.101",
      "role": "Primary"
    },
    {
      "id": "2",
      "name": "db-node-2",
      "status": "Online",
      "ip_address": "192.168.1.102"
      "role": "Replica"
    },
    {
      "id": "3",
      "name": "db-node-3",
      "status": "Offline",
      "ip_address": "192.168.1.103",

23

•	 If I am a replica node, regularly check the primary node state at TTL 
intervals for any signs of failure:
If there is no available primary state to retrieve, initiate a failover procedure.

•	 If I am a replica node, monitor primary state event changes with a 
locally cached version:
If changes are detected, trigger a failover procedure to address the evolving 
state of the primary node.

 
Automated failover

The agents running on the replicas continuously monitor the primary node for 
any changes by subscribing to state changes. In the event of a change on the 
primary node, such as an IP address modification, the ‘onChange handler’ is 
triggered to execute a failover procedure.

Given that all replica nodes will be notified of the state change, it becomes 
crucial to establish a mechanism for coordination to ensure that only one 
node initiates the failover. A straightforward solution is to employ a global 
or distributed lock for synchronization purposes. This lock ensures that only 
a single node is authorized to execute the failover, preventing conflicts and 
ensuring a smooth transition in the event of primary node changes.

The first replica node that is able to acquire the lock will become the primary.

1.	 Marks the node that has the lock as primary and updates the cluster state
2.	 After trying and failing to acquire the primary lock, the other replica nodes 

will wait until a new primary state event is received
3.	 The agent then changes the replication source to the new primary node



24

Primary and replica node and cluster state examples:

Primary

primary {
  "id": "1",
  "name": "db-node-1",
  "hostname": "mysql01.example.com",
  "ip_address": "192.168.1.101",
  "port": 3306,
  "database_name": "biling",
  "status": "Online",
  "uptime": "14 days, 6 hours",
  "version": "MySQL 8.0.26",
  "replication": {
    "role": "Primary",
    "replica_count": 2,
    "replica_status": "Synced"
  },
  "connections": {
    "current_connections": 25,
    "max_connections": 100
  },
  "performance_metrics": {
    "query_cache_hits": 7500,
    "query_cache_misses": 500,
    "innodb_buffer_pool_size": "2 GB"
  },
  "storage": {
    "total_size": "100 GB",
    "used_space": "60 GB",
    "free_space": "40 GB"
  },
  "last_updated": "1696494655",
  "ttlseconds": "10",
}

Replica

replica {
  "id": "2",
  "node_id": "db-node-2",
  "hostname": "mysqlreplica01.example.com",
  "ip_address": "192.168.1.102",
  "port": 3306,
  "database_name": "my_database",
  "status": "Online",
  "uptime": "7 days, 12 hours",
  "version": "MySQL 8.0.26",
  "master": {
    "master_node_id": "db-node-1",
    "master_hostname": "mysql01.example.com",
    "master_ip_address": "192.168.1.101",
    "master_port": 3306,
    "replication_status": "Connected",
    "seconds_behind_master": 10
  },
  "connections": {
    "current_connections": 15,
    "max_connections": 50
  },
  "last_updated": "1696494655",
  "ttlseconds": "10",
}



25

Cluster

cluster {
  "id": "1",
  "namespace": "production",
  "project": "bluebird",
  "cluster_name": "mybillingapp",
  "last_updated": "1696494655",
  "ttlseconds": "10",
  "nodes": [
    {
      "id": "1",
      "name": "db-node-1",
      "status": "Online",
      "ip_address": "192.168.1.101",
      "role": "Primary"
    },
    {
      "id": "2",
      "name": "db-node-2",
      "status": "Online",
      "ip_address": "192.168.1.102"
      "role": "Replica"
    },
    {
      "id": "3",
      "name": "db-node-3",
      "status": "Offline",
      "ip_address": "192.168.1.103",
      "role": "Replica"
    }
  ],
  "services": [
    {
      "id": "1",
      "name": "mybillingapp-service",
      "type": "ClusterIP",
      "port": 3306,
      "replicas": 3,
      "status": "Running"
    }
  ]
}



26

Op 3 — Observability

Observability (O11y) is a crucial aspect of building a DBaaS solution because 
it enables organizations to effectively monitor, understand, and optimize their 
database infrastructure. Observability goes beyond basic monitoring and 
alerting and focuses on understanding the behavior and performance of your 
systems, services, and applications in real-time and through historical analysis. 

It can be broadly classified into two main areas: Compute and Software.

1.	 Compute o11y concerns the performance of the underlying hardware 
infrastructure, such as CPU, RAM and disk usage.

2.	 Software o11y concerns the performance and behavior of the services 
and applications running on your hardware. Metrics of interest here might 
include memory consumption by various processes and the number of open 
network connections.

By implementing a robust observability framework, businesses gain valuable 
insights into their database’s performance, identify and troubleshoot issues 
quickly, and make data-driven decisions to enhance the overall efficiency, 
reliability, and security of their DBaaS. Embracing observability principles 
ensures that organizations can maintain a high-quality database service, 
ultimately contributing to improved application performance and end-user 
experience. O11y practices span from basic best practices (logging, metrics, 
alerting) to more advanced options specific to each type of database.

Logs (syslog)

Logging is a fundamental aspect of observability. Syslog is a widely-used 
standard for message logging in DBaaS solutions, providing a consistent 
format for log messages and enabling the efficient management and analysis 
of log data.

Metrics and events (Telegraf, other exporters)

Metrics are essential for monitoring the performance and health of a DBaaS 
solution. Collecting and storing various metrics at regular intervals, such as 
resource utilization, throughput, etc., provides ongoing insights into the entire 
system’s overall performance.



27

Metrics

Datadog for example taxonomizes metrics out into two types: work and 
resource metrics. The former help teams assess and intervene on the 
performance and reliability of the system. They are broken out into four 
subtypes: 

•	 Throughput
A measure of capacity, this measures how much work a system can execute 
within a specified amount of time.

•	 Success metrics
A measure of reliability, these measure the proportion of work that was 
executed successfully without errors or issues.

•	 Error metrics
Another measure of reliability, these are measured separately from success 
metrics to help isolate, diagnose and intervene on problems.

•	 Performance metrics
A measure of system responsiveness and efficiency, these are various metrics, 
such as latency, which can be presented as an average or percentile. 

 

On the other hand, resource metrics focus on the underlying infrastructure’s 
health and efficiency. Here are the key areas to consider when collecting 
resource metrics:

•	 Utilization
A time or capacity-based reliability measurement, these metrics can 
indicate whether or not a resource is operating near or at its limits.

•	 Saturation
Measuring back-pressure, or the amount of requests that haven’t been 
serviced yet, these can indicate constraints and scalability issues.

SUBTYPE	 DESCRIPTION	 VALUE 
 

THROUGHPUT	 REQUESTS PER SECOND	 312 

SUCCESS	 PERCENTAGE OF RESPONSES THAT ARE 2XX SINCE LAST MEASURMENT	 99.1 

ERROR	 PERCENTAGE OF RESPONSES THAT ARE 5XX SINCE LAST MEASUREMENT	 0.1 

PERFORMANCE	 90TH PERCENTILE RESPONSE TIME IN SECONDS	 0.4 

SUBTYPE	 DESCRIPTION	 VALUE 
 

THROUGHPUT	 QUERIES PER SECOND	 949 

SUCCESS	 PERCENTAGE OF QUERIES SUCCESSFULLY EXECUTED SINCE LAST MEASUREMENT	 100 

ERROR	 PERCENTAGE OF QUERIES YIELDING EXPECTATIONS SINCE LAST MEASUREMENT	 0 

ERROR	 PERCENTAGE OF QUERIES RETURNING STALE DATA SINCE LAST MEASUREMENT	 4.2 
 

PERFORMANCE	 90TH PERCENTILE RESPONSE TIME IN SECONDS	 0.02 

EXAMPLE WORK METRICS: WEB SERVER (AT TIME 2016-05-24 08:13:01 UTC)

EXAMPLE WORK METRICS: DATA STORE (AT TIME 2016-05-24 08:13:01 UTC)

Source: Datadog



28

•	 Errors
These measure internal errors that may not be immediately observable in 
the resource’s output, allowing for proactive intervention.

•	 Availability
An accessibility measurement, these show the percentage of time that a 
resource is responsive and able to fulfill requests.

 

Events 

Unlike continuous metrics, events capture notable points in time, such as 
changes and anomalies, that can provide essential context for diagnosis and 
response. They are especially valuable because they pinpoint what happened 
at a specific point in time and can be interpreted on their own. Here are some 
examples of noteworthy events:

•	 Changes
Events related to code releases and builds provide insights into the 
evolution of your software and can help track the impact of changes on 
system behavior.

•	 Alerts
Alerts notify relevant parties when something requires immediate 
attention.

•	 Scaling events
These help track resource provisioning and scaling activities.

RESOURCES

DISK IO 

MEMORY 

MICROSERVICE 
 

DATABASE 
 
 

UTILIZATION

% TIME THAT 
DEVICE WAS BUSY

% OF TOTAL MEMORY 
CAPACITY IN USE

AVERAGE % TIME 
EACH REQUEST 
SERVICING THREAD 
WAS BUSY 
 
 
AVERAGE % TIME 
EACH CONNECTION 
WAS BUSY 

SATURATION 
 
 
 
WAIT QUEUE LENGTH 
 
 
 
 
SWAP USAGE

 
# ENQUEUED 
REQUESTS

 
# ENQUEUED QUERIES 
 
 

ERRORS 
 
 
 
# DEVICE ERRORS 
 
 
 
 
N/A (NOT USUALLY 
OBSERVABLE? 
 
 
 
# INTERNAL ERRORS 
SUCH AS CAUGHT 
EXCEPTIONS 
 
 
 
# INTERNAL ERRORS, 
E.G. REPLICATION 
ERRORS 

AVAILABILITY 
 
 
 
% TIME WRITABLE 
 
 
 
 
N/A 
 
 
 
 
% TIME SERVICE IS 
REACHABLE 
 
 
 
 
% TIME DATABASE IS 
REACHABLE

Source: Datadog

WHAT HAPPENED

HOTFIX F464BFE RELEASED 
TO PRODUCTION 

PULL REQUEST 1630 
MERGED 

NIGHTLY DATA ROLLUP 
FAILED 

TIME

2016-04-15    04:13:25 UTC 
 

2016-04-19    14:22:20 UTC 
 

2016-04-27    00:03:18 UTC 
 

ADDITIONAL INFO 
 
 
 
TIME ELAPSED: 1.2 SECONDS

 
 
COMMITS: EA72D6

 
 
LINK TO LOGS OF FAILED JOB 

Source: Datadog



29

Alerting 

Implementing automated alerting helps monitor the DBaaS solution 
continuously, detecting and notifying the relevant personnel of any anomalies 
or issues that may require immediate attention. The key principles for effective 
alerting are as follows:

•	 Page on symptoms, rather than causes
Alerts are meant for intervention, not diagnosis. An example of a useful 
alert is, "Two MySQL nodes are down."

•	 Alert liberally; page judiciously
Not all alerts should result in immediate intervention, you should create a 
tiered system based on their severity.

Following these principles will ultimately prevent alert fatigue and increase 
their utility.

Authoring your monitoring solution is unnecessary. Instead, we will opt for a 
specialized performance monitoring vendor, which could be an open-source or 
commercial provider offering an agent-based solution. This approach allows us 
to include a monitoring agent with each node on our platform.

For instance, DataDog is a suitable example as it supports the OpenTelemetry 
framework. It can be seamlessly integrated with Dapr to transmit telemetry 
data to a Datadog backend while also monitoring key metrics for hosts and 
databases.

DATA	 ALERT	 TRIGGER 
 

WORK METRIC: THROUGHPUT	 PAGE	 VALUE IS MUCH HIGHER OR LOWER THAN USUAL OR THERE IS AN ANOMALY 
 

WORK METRIC: SUCCESS	 PAGE	 PERCENTAGE OF WORK THAT IS SUCCESSFUL DROPS BELOW THRESHOLD 
 

WORK METRIC: ERRORS 	 PAGE	 THE ERROR RATE EXCEEDS A THRESHOLD 
 

WORK METRIC: PERFORMANCE 	 PAGE	 WORK TAKES TOO LONG TO COMPLETE (PERFORMANCE VIOLATES SLA)
 

RESOURCE METRIC: UTILIZATION 	 NOTIFICATION	 APPROACHING CRITICAL RESOURCE LIMIT 
 

RESOURCE METRIC: SATURATION	 RECORD	 NUMBER OF WAITING PROCESSES EXCEEDS A THRESHOLD 
 

RESOURCE METRIC: ERRORS	 RECORD	 NUMBER OF INTERNAL ERRORS DURING EXCEEDS THRESHOLD 
 

RESOURCE METRIC: AVAILABILITY	 RECORD	 RESOURCE IS UNAVAILABLE LONGER THAN THRESHOLD 
 

EVENT: WORK-RELATED	 PAGE	 CRITICAL WORK THAT SHOULD HAVE BEEN COMPLETED IS REPORTED AS 	
 		  FAILED OR INCOMPLETE

Source: Datadog



30

Observability spotlight: database query performance

Database queries are a key influencer of database and resource performance; 
therefore you should not forget to include their tracking in your observability 
plan. To get you started, we’ve included a selection of common databases and 
their tooling here: 

•	 MySQL
MySQL’s query performance can be monitored using the Performance 
Schema that provides detailed statistics on performance and resource 
usage. It helps in identifying and troubleshooting performance bottlenecks. 
Another useful tool is MySQL Enterprise Monitor, which offers real-time 
monitoring, performance analysis, and security features specific to MySQL. 
Additionally, the open-source Percona Monitoring and Management (PMM) 
tool can be leveraged to gain insights into MySQL’s performance and 
resource utilization.

•	 MariaDB
MariaDB’s query performance can be monitored using tools like the 
Performance Schema and the Slow Query Log. These tools help identify 
slow queries, track query execution times, and gather other performance-
related metrics. MariaDB also offers advanced observability features and 
tools to ensure optimal database performance.

•	 PostgreSQL
PostgreSQL provides tools like pg_stat_statements and the built-in 
extension pg_stat_activity for monitoring query performance. These 
tools track query execution times, slow queries, and other performance 
metrics. PostgreSQL also provides advanced observability tools and 
practices tailored to its specific architecture. For example, pgBadger 
analyzes PostgreSQL log files and generates detailed reports on database 
performance.

https://www.percona.com/software/database-tools/percona-monitoring-and-management
https://github.com/darold/pgbadger


31

•	 MongoDB
MongoDB offers a variety of tools to monitor query performance, like the 
built-in MongoDB Database Profiler, which provides detailed information 
about the execution of database operations. The MongoDB Management 
Service (MMS) is also available and provides a web interface for monitoring 
performance metrics in real-time. It allows users to visualize slow queries 
and aids in identifying potential bottlenecks in the system.

•	 Redis
Redis offers the MONITOR command and the INFO command with various 
sections like commandstats and latency for monitoring query performance. 
These commands offer insights into command execution, latency, and 
other performance-related metrics. Furthermore, Redis Monitor, a built-
in command, provides real-time insights into Redis commands being 
executed, enabling users to detect performance issues and bottlenecks.

Op 4 — Backup and recovery

Implementing a robust backup and recovery solution is of paramount 
importance for any database infrastructure. An agent-based backup solution, 
designed to be self-sustainable and independent, exhibits key principles 
and decisions to ensure its resilience. Here’s a breakdown of the decisions to 
achieve this:

•	 Local persistent storage
Storing backup schedules and backup job configurations locally ensures 
that your backup agent can function autonomously, even if the central 
control plane becomes unavailable. This local storage provides resilience 
and allows scheduled backups to continue without interruption.

•	 Encrypted credentials
Encrypting and storing credentials locally on the host is a security measure 
that minimizes external dependencies. This approach mitigates the risk 
associated with a remote secrets management solution and enhances data 
security. In the event of a security breach on the control plane, only the 
database credentials stored locally are potentially exposed, limiting the 
impact of such an incident.

•	 Dedicated backup database user
The use of a dedicated backup database user with appropriate permissions 
is crucial for the agent to execute backup and restore operations. This user 
should have the necessary access to perform these tasks while minimizing 
potential security risks.

•	 Flexibility in backup methods
The backup agent is designed to be flexible and versatile, capable of 
supporting a range of different backup methods and parameters. This 
adaptability allows it to cater to the diverse backup requirements of various 
database technologies and open-source alternatives.



32

•	 Domain knowledge
In some cases, the agent might need to possess domain knowledge of the 
specific database technology being backed up or restored. This expertise 
ensures that the backup process is tailored to the intricacies of the 
database system, optimizing the integrity and efficiency of the backups.

•	 Local embedded database (e.g., SQLite)
The use of a local embedded database, such as SQLite, for storing 
schedules, job configurations, logs, and backup records, further enhances 
the autonomy and resilience of the agent. This database provides a 
reliable repository for critical information, even when the control plane is 
unavailable.

•	 Data synchronization
To ensure data integrity and facilitate collaboration with other clients and 
services in the platform, the agent periodically sends logs and records 
back to the control plane. This synchronization process enables other 
components of the system to access and utilize the collected data for 
various purposes.

The backup agent achieves a level of self-sufficiency and independence that 
is crucial for robust backup and recovery processes. It ensures that backup 
operations continue seamlessly, even in the face of potential control plane 
disruptions.

Data structures examples 

A backup job for the agent could have the following structure:

Backup job schema:

Job name:			   # A unique name for the backup job.

Description:			   # An optional description of the job.

Schedule:

Frequency:			   # How often the backup job runs (e.g., daily, weekly, monthly).

Timing:			   # Specific time or timing window for the job (e.g., 2:00 AM UTC).

Retention policy:		  # How long backups are retained (e.g., 7 days, 30 days, indefinitely).

Source:

Data source type:		  # Type of data or resource being backed up  
				    (e.g., file system, database, virtual machine).

Source location:		  # Path or location of the data/resource to be backed up.



33

Destinations:

Backup destination:	 # Where the backups are stored (e.g., local disk, network storage, cloud storage).

Credentials:		  # Database or cloud credential name

Backup method:

Backup type:		  # Type of backup (e.g., full, incremental, differential).

Compression:		  # Whether data should be compressed before backup.

Encryption:		  # Whether data should be encrypted during backup.

Schemas:		  # List of databases/schemas to backup (e.g.,  all or individual)

Backup tool:

Path:               		  # Path to the binary / tool
     
Program:		  # Name of the backup tool 

Parameters:		  # List of default backup parameters 

Credentials:		  # A list of user credentials with permissions to execute  backups and 
			   upload to cloud storage 

Backup credential: 	 # Database backup user credentials 

Cloud credentials: 	 # Cloud user storage credentials 

Actions:

Pre-backup script:	 # Optional script or actions to execute before starting the backup.

Post-backup script:	 # Optional script or actions to execute after completing the backup.

Notifications:

On success:		  # Who to notify (e.g., email addresses) when the backup job succeeds.

On failure:		  # Who to notify when the backup job fails.

===

Backup user credentials could have the following format:

===

Database credentials schema:

Credential name:	 # A unique name or identifier for these credentials (e.g., MyProdCluster)



34

Database type:	 # Type of the database (e.g., MySQL, PostgreSQL, MongoDB).

Database name:	 # Name of the specific database.

Hostname or IP:	 # Hostname or IP address of the database server.

Port:			   # Port number for the database connection.

Username:		  # Database username for authentication.

Password:		  # Database password for authentication.

SSL/TLS Configuration:	 # Configuration options for secure connections (if applicable).

Additional parameters:	 # Additional connection parameters or options (if applicable).

Description:		  # Optional description or notes about these credentials.

===

Cloud user storage credentials could have the following format:

===

Cloud credentials schema:

Cloud provider:	 # Name or identifier of the cloud service provider (e.g., AWS, Azure, GCP).

Credential name:	 # A unique name or identifier for these credentials (e.g., MyAWSAccount).

Access key ID:		 # Access Key ID or Access Key.

Secret access key:	 # Secret Access Key or Secret Key.

Session token:		 # Optional session token for temporary security credentials (for AWS STS).

Region:		  # Region or location where these credentials should be used.

Service-specific config:

Service 1:

Configuration key 1:	 # Service-specific configuration, if applicable.

Configuration key 2:	 # Service-specific configuration, if applicable.

Service 2:

Configuration key 1:	 # Service-specific configuration, if applicable.

Configuration key 2:	 # Service-specific configuration, if applicable.



35

Permissions:

Role or policy name:	 # The IAM role or policy associated with these credentials.

Permissions summary:	 # A brief summary of the permissions granted by these credentials.

Expiration:

Valid from:		  # Date and time when the credentials become valid (if applicable).

Valid until:		  # Date and time when the credentials expire.

Description:		  # Optional description or notes about these credentials.

===

Backup service architecture

An authentication and authorization process for agent services using a sound 
approach is critical to ensuring the security of the platform while maintaining 
extensibility for future service additions. It should provide a structured method 
for verifying the identity of users and agent services and controlling access to 
various endpoints. Here’s a breakdown of the process:

•	 User token generation
A unique USER_TOKEN is generated for each end-user. This token is 
associated with an individual and can be used with multiple agent services.

•	 Agent service registration
When an agent-based service is set up or started, it initiates a validation 
process with a "Token Service" on the platform. During this registration 
phase, the service presents the USER_TOKEN for validation.

•	 Token validation by token service
The "Token Service" validates the USER_TOKEN presented by the agent 
service. To do this, it checks the token against an existing user record 
through a "User Service."

•	 Agent token generation
If the USER_TOKEN is found to be valid, the "Token Service" generates 
a unique AGENT_TOKEN. This AGENT_TOKEN is returned to the agent 
service and becomes the basis for subsequent requests to the platform.

•	 Service endpoint access
•	 Any call to a service endpoint by a client, such as accessing a "Job 

Service" endpoint, requires a token validation phase with the "Token 
Service."

•	 For example, a client requesting access to a specific endpoint must 
provide the AGENT_TOKEN for validation.

•	 If the AGENT_TOKEN is successfully validated, the service endpoint 
URL is returned to the agent service, granting access to the 
requested functionality.



36

This authentication and authorization process aligns with best practices for 
securing services and ensuring that only authorized users and agent services 
can access specific resources. By having a dedicated "Token Service" and 
a "User Service," you can centralize and streamline token validation, user 
management, and authorization processes.

Additionally, this architecture allows for extensibility by accommodating 
different services, such as database provisioning, as your platform grows. By 
adhering to this structured approach, you can maintain a robust and secure 
authentication and authorization framework that provides controlled access to 
platform resources while supporting future service expansion.
 

The backup function comprises a well-structured set of services, each with 
specific roles and responsibilities. This service-oriented architecture ensures 
efficient and secure backup and recovery processes. Here’s a breakdown of the 
running services within the application:

•	 Backup agents
These agents run on the database nodes and are equipped with a Dapr 
sidecar. Their primary role is to perform backups and restores of the 
database. They also handle the uploading and downloading of data to and 
from cloud object storage.

•	 Token authentication service
The Token Authentication Service is responsible for authentication and 
authorization across the platform. It verifies the USER_TOKEN for a specific 
end-user and generates a unique AGENT_TOKEN for agent services to use 
in subsequent requests on the platform.

•	 Configurations service
The Configurations Service manages service configurations, which may 
include credentials, license keys, and other settings. Additionally, it handles 
the reporting of agent and service states, providing a central location for 
managing and monitoring configurations.



37

•	 Backup service
The Backup Service is dedicated to managing backup jobs, creating backup 
records, storing logs, and reporting backup progress. It plays a central role 
in the backup and recovery process.

•	 Notification service
The Notification Service is responsible for providing notifications, which 
can be delivered through various channels, such as email or incident 
management services like PagerDuty. These notifications are essential for 
keeping stakeholders informed about the status of backup operations and 
other critical events.

•	 User service
The User Service focuses on authenticating agent and service access for 
users of the platform. It validates the USER_TOKEN, ensuring that only 
authorized users can interact with the platform’s services and resources.

This service architecture demonstrates a clear separation of concerns, which is 
crucial for efficient and secure backup and recovery operations. Each service is 
responsible for its specific domain, ensuring that tasks are performed reliably 
and securely. 

The design of the backup application’s services promotes scalability, 
maintainability, and the ability to expand or adapt to evolving backup and 
recovery requirements.



38

Backup agent initialization and registration

The co-location of an agent with the database nodes at provision time, 
along with the exchange of essential information during the initialization 
and registration phase, sets the foundation for the backup agent’s effective 
operation within the platform. Here’s an overview of the information received 
by the backup agent during this phase:

•	 AGENT_TOKEN
The AGENT_TOKEN is a unique token generated by the Token 
Authentication Service during the agent’s registration. This token serves as 
the agent’s identity and is used for subsequent requests to the platform. 
It ensures that the agent has authenticated access and authorization to 
perform specific tasks within the platform.

•	 Backup job configuration
The backup agent receives the backup job configuration, which includes 
the parameters and settings necessary to perform backup operations. 
This configuration outlines details such as what data to back up, backup 
schedules, retention policies, and any additional specifications related to 
the backup process.

•	 Database credentials
Database credentials are critical for the backup agent to establish a 
connection to the database nodes. These credentials typically include 
information like database usernames, passwords, connection strings, and 
any other necessary details to access the database. They are essential for 
performing database backups and restores securely.

•	 Cloud credentials
Cloud credentials are required for the backup agent to interact with cloud 
object storage. These credentials include access keys, secret keys, or other 
authentication tokens specific to the cloud storage service being used. They 
enable the agent to upload and download backup data to and from cloud 
storage efficiently and securely.

The receipt of these components during the initialization and registration 
phase equips the backup agent with the necessary tools and access rights to 
perform its role effectively. With the AGENT_TOKEN, it can authenticate its 
requests to other platform services. The backup job configuration guides the 
agent in executing scheduled backups and ensuring data protection. Database 
credentials enable database access, while cloud credentials enable seamless 
interaction with cloud storage.

This approach ensures that the backup agent has the essential resources and 
permissions to fulfill its responsibilities in securely backing up and restoring 
data within the platform.



39

The backup process

The backup process carried out by the agent is a crucial component of a data 
protection strategy. Here’s an outline of the steps involved in executing a 
backup job:

•	 Authentication with database node
The agent begins the backup job by authenticating itself with the database 
node using the database credentials obtained during the initialization and 
registration phase. This ensures that the agent has the necessary access 
rights to perform backup operations.

•	 Running the backup
With a successful authentication, the agent proceeds to run the backup 
using the backup tool specified in the configuration. The type of backup 
(e.g., full, incremental, differential) is defined in the configuration and 
guides the backup process. The agent initiates the backup process, 
capturing the required data.



40

•	 Storing the backup
Once the backup is completed, the agent stores the backup in designated 
destinations. These destinations can include both local storage, typically 
on the same database node, and cloud storage. Storing backups in multiple 
locations enhances data redundancy and recovery options.

•	 Reporting backup progress
The agent periodically reports the progress of the backup job at intervals. 
These progress reports help keep stakeholders informed about the status 
of the backup operation, making it easier to monitor and manage the 
process.

•	 Uploading backup logs
In addition to reporting progress, the agent uploads backup logs. These 
logs contain detailed information about the backup process, including any 
issues or errors encountered. This data is invaluable for troubleshooting 
and auditing purposes.

•	 Reporting success or failure 
At the conclusion of the backup job, the agent reports whether the job 
was successful or encountered any failures. This status report is crucial for 
identifying issues and ensuring the integrity of the backup process.

A significant outcome of the backup job is the creation of a backup record. This 
metadata contains essential information about the backup, such as its creation 
timestamp, included data, storage locations, and relevant configuration 
settings. Backup records play a pivotal role in tracking and managing backups 
over time. They provide the means to locate and restore data when needed, 
serving as a vital component of data recovery and maintenance efforts.

By following this structured backup process and maintaining backup records, 
your organization can ensure the security and recoverability of critical data, 
safeguarding against data loss and system failures.

The specific contents of a backup record can vary depending on what your 
requirements are but common elements may include:

•	 Backup set ID
An identifier that can be used to group different backups as one set, e.g., a 
full with a number of incremental backups.

•	 Backup ID
A unique identifier for the backup, which is used to distinguish between 
different backups.

•	 Node ID
A unique identifier for the database node where this backup was taken on.

•	 Cluster ID
A unique identifier for the database cluster where this backup was taken on. 
  



41

•	 Database credentials ID
A unique identifier for the database credentials that were used

•	 Cloud credentials ID
A unique identifier for the cloud credentials that were used.

•	 Timestamp
The date and time when the backup was created.

•	 Schemas
A list schemas that have been backed up, e.g., ‘all’ or individual schema 
names for partial/differentials.

•	 Data directory
The path of the database node’s data directory.

•	 Storage location
The location where the backup is stored, e.g., a cloud storage like ’s3://
production/backups’ or a directory folder for local storage.

•	 Backup name
A name of the backup file.

•	 Backup type
Indication of whether the backup is a full backup, incremental backup, 
differential backup, or another type.

•	 Backup method
The backup method/tool used for the backup.

•	 Backup method configuration
Information about the parameters/configuration used with the backup tool.

•	 Backup size
The size of the backup in terms of data volume. This information helps in 
estimating storage requirements and monitoring backup growth.

•	 Backup status
Information about the success or failure of the backup operation, including 
any error messages or warnings.

•	 Backup duration
The duration of the backup operation.

•	 Retention policy
The duration for which the backup should be retained before it can be 
safely deleted or overwritten by newer backups.

•	 Backup schedule
If the backup is part of a regular schedule, the record may include 
information about the backup frequency and timing.

 



42

•	 Backup user
The user who created the backup.

•	 Description
General information about the backup job, e.g., daily full  backup of 
production database.

Incorporating the autopilot pattern into the backup agent’s functionality 
enhances the system’s reliability and automation capabilities, particularly 
with respect to database management and high availability. Here’s how the 
autopilot pattern can benefit a backup agent and the database infrastructure:

•	 Role awareness
Capability to discern the role of a database node (primary vs. replica) 
without manual intervention. This role awareness is crucial for 
orchestrating backups effectively. For instance, you can configure backups 
to be taken only on replica nodes to minimize the impact on the primary 
database’s performance.

•	 Service discovery
Automatically locate and connect to the appropriate database nodes, 
simplifying configuration and improving flexibility.

•	 Replication topology awareness
Understanding the replication topology within the database cluster is 
essential for backup strategies. Being aware of the replication setups 
makes it easier to ensure that backups are executed in a way that aligns 
with specific requirements like taking backups on the least lagging replica 
for example.

•	 Automated failover and recovery
Streamlines the failover and recovery processes. In the event of a primary 
node failure, trigger automatic failover to a replica, ensuring minimal 
downtime and data loss. This is especially critical for maintaining data 
integrity and continuity.

•	 Decentralized control
Unlike the Kubernetes Operators, operates without relying on a centralized 
control plane. This decentralized approach is advantageous in terms of 
scalability, reliability, and robustness.

•	 External tools integration
Additionally, external solutions like MySQL Orchestrator or ClusterControl 
can complement the ‘autopilot pattern’ by providing automated failover 
support and more advanced features. Integrating both solutions can further 
enhance a database cluster’s stability and automation capabilities.

The combination of the autopilot pattern, service discovery, role awareness, 
and automation features like failover and recovery aligns well with modern 
approaches to database management in distributed systems. It simplifies 
the administration of databases, improves service resilience, and facilitates 
more effective backup strategies, making your platform more robust and self-
sufficient.



43

Restoring backups

Restoring backups, combined with the structure of an API gateway and client 
interaction, provides an efficient and user-friendly means of data recovery. 
Here’s how the process works:

•	 Backup record retrieval
Users, typically through a UI, can search and locate a specific backup 
record containing details about a previously performed backup. This record 
includes information such as when the backup was taken, the backup 
type, and the method used for the backup. These details are crucial for 
identifying the appropriate backup to restore.

•	 Restoration request
Once a suitable backup record is identified, users can initiate a restoration 
request. This request is processed through the UI and subsequently passed 
to the API gateway.

•	 API gateway
The API gateway serves as the front end for API requests, offering several 
key functions:

•	 Enforcing Throttling: It can limit the rate at which requests are 
processed, preventing overloads and ensuring fair resource 
allocation.

•	 Security Policies: The gateway can enforce security policies, verifying 
that the user initiating the restoration request has the necessary 
permissions.

•	 Request Routing: It routes the request to the appropriate backend 
service responsible for restoration.



44

•	 Backend services
The API gateway aggregates and directs the request to backend services 
that specialize in the restoration process. These services can interact with 
the backup agent and manage the complex task of actually restoring the 
data.

•	 Restoration process
The restoration process itself, which involves interacting with the backup 
agent, may include steps such as determining the appropriate backup 
file, coordinating with the backup agent to initiate the restoration, and 
monitoring the process to ensure its successful completion.

This is highly effective as it abstracts the complexity of the restoration process 
from end-users and centralizes it within the backend services and the backup 
agent. Users interact with a user-friendly UI to initiate the restoration, while 
the API gateway ensures that the request is handled securely and efficiently by 
directing it to the appropriate services. The backup agent’s intrinsic knowledge 
of how to restore backups is utilized to ensure data integrity and successful 
recovery.

The clear separation of concerns in this approach simplifies the user 
experience, enhances security, and promotes robust data recovery capabilities 
within your platform.

Key functions of an API gateway may include:

•	 Request routing
It receives incoming API requests and routes them to the appropriate 
service based on a defined set of rules. This routing can be based on the 
URL, HTTP headers, or other parameters.

•	 Load balancing
API gateways can distribute incoming requests across multiple instances 
of a microservice to ensure high availability, fault tolerance, and optimal 
performance.

•	 Authentication and authorization
They enforce authentication and authorization checks, ensuring that only 
authorized users or systems can access specific APIs. This can include 
token validation, OAuth integration, or other authentication mechanisms.

•	 Rate limiting and throttling
API gateways control the rate at which clients can make requests to 
prevent abuse and ensure fair usage of resources.

•	 Caching
They can cache API responses to reduce the load on backend services and 
improve response times.

•	 Response compression
API gateways can compress API responses before sending them to clients, 
reducing bandwidth usage and improving latency.



45

•	 Request/response transformation
They can modify request and response payloads, headers, or other parts of 
the communication, allowing clients to receive data in a format they expect 
or converting requests into a format that backend services can handle.

•	 Logging and monitoring
API gateways can log request and response data, making it easier to 
diagnose issues and monitor API usage. They may also integrate with 
monitoring and analytics tools.

•	 Security
API gateways often provide an additional layer of security by protecting 
against common web application threats, such as SQL injection and cross-
site scripting (XSS).

•	 Analytics and reporting
They can collect data on API usage, including traffic patterns, response 
times, and error rates, which can be used for reporting and performance 
optimization.

The use of a web portal to facilitate backup restoration by end users provides 
a user-friendly and intuitive interface for initiating the restore process. Here’s 
how this process typically unfolds:

•	 User login
An end user accesses a web portal and logs in, using their credentials to 
authenticate and gain access to the platform.

•	 Backup selection
Within the web portal, the user interacts with a user interface that allows 
them to select a specific backup they wish to restore. This selection is 
typically made based on information contained in backup records, such as 
the timestamp, type, and method of the backup.

•	 Restore job creation
Once the user has chosen a backup to restore, a restore job is created. This 



46

job is associated with the selected backup record, effectively specifying the 
data to be restored.

•	 Initiating restore 
The restore job invokes the ‘restore’ endpoint on the ‘Backup Agent’ that is 
running on the target node where the restoration is to be performed. 

•	 Backup agent interaction 
The ‘Backup Agent’ on the node receives the restore job request. 
It leverages its knowledge and capabilities to restore the selected 
backup. This process may involve tasks such as locating the 
appropriate backup files, ensuring data consistency, and executing 
the restoration.

•	 Monitoring and reporting
Throughout the restoration process, monitoring and reporting mechanisms 
can be in place to track the progress and status of the operation. This 
information can be relayed back to the web portal for user visibility.

•	 Completion and confirmation
Once the restoration is completed, the user is typically provided with a 
confirmation of the successful restoration. This confirmation ensures that 
the user is aware of the outcome.

The use of a web portal simplifies the restoration process for end users, 
allowing them to navigate and select backups with ease. The initiation of the 
restore job, along with the subsequent interaction with the ‘Backup Agent,’ is 
abstracted from the end user, ensuring that the complexities of the restoration 
process are handled seamlessly and reliably.

The ‘Backup Agent’ serves a dual purpose as it can also function as 
a command-line client directly on the host for backup restoration. For 
instructions on how to perform this task, you can access the web portal, 
click on a specific backup record, and choose the "manual restore" option, for 
instance.

# Create working directory
$ mkdir restore-backup && cd restore-backup

# Get the backup
$ backupagent get-backup-with-id 2304 -o mariabackup_all_202310121100.xbstream

# Restore into a new directory first
$ mkdir basebackup
$ cat mariabackup_all_202310121100.xbstream | mbstream -x -C basebackup

# Perform recovery on the backup files
$ mariabackup --prepare --target-dir=basebackup

# Stop the database service and erase the data directory content
$ mysqladmin -uroot -p shutdown

# If you have a binary logs enabled and stored in /var/lib/mysql then move them 



47

prior to erasing the data directory
# The binary logs are required if you want to perform PITR after the backup has been 
restored
$ rm -rf /var/lib/mysql/*

# Restore the backup following the steps outlined below
# Move (--move-back) or copy (--copy-back) the files into the directory
$ mariabackup --copy-back --target-dir=basebackup --datadir=/var/lib/mysql

# Change data directory owner to mysql
$ chown -R mysq:mysql /var/lib/mysql

# Start the database service
$ systemctl start mariadb

The manual steps described are essentially automated when an end user 
chooses to perform an automatic backup restore from the web portal.



48

Verifying backups

Backup verification is the process of confirming that the data contained in 
backups is accurate, complete, and can be successfully restored when needed. 
This verification is a critical component of any data backup and recovery 
strategy to ensure that backups are reliable and can be relied upon in the event 
of data loss or disasters.

Checksums and cryptographic hashes, such as MD5, SHA-256, and SHA-3, 
can be employed to generate unique codes for backup files. By comparing 
these checksums or hashes with backup copies, for example those stored in 
cloud storage, you can validate the integrity of the data. When they match, 
it provides a strong indication that the data is unaltered and remains in its 
original, undamaged state.

One of the most effective ways to verify a backup is to periodically perform 
test restores. This involves selecting a backup and attempting to restore 
it on a newly created database node to ensure it can be successfully 
recovered. Testing restores for large datasets in the 100s GB range can be 
time-consuming and resource-intensive. In such cases, it may not always be 
practical to perform full test restores.

Op 5 — Scaling

Scaling a database is the process of adding or removing database nodes to 
increase or decrease the capacity and performance of a database system. 
This is a fundamental operation in managing the performance and capacity 
of a database to meet the demands of applications and users. Database node 
scaling can be categorized into two primary approaches:



49

•	 Vertical scaling (up-scaling)
•	 This involves adding more resources (such as CPU, RAM, or 

storage) to an existing database node to enhance its performance. 
It typically involves upgrading the hardware of the database server 
or adjusting the virtual machine (VM) resources in a cloud-based 
environment. Vertical scaling is a straightforward way to handle 
increased workloads up to the limits of the hardware or cloud VM 
configuration.

•	 Key benefits of vertical scaling:
•	 Relatively simple to implement.
•	 No significant changes to the database architecture or 

application code required.
•	 Immediate performance improvement.

•	 Limitations of vertical scaling:
•	 Eventually, hardware limitations may be reached, limiting 

further scalability
•	 Can be costly if hardware upgrades are frequent.

•	 Horizontal scaling (out-scaling)
•	 In horizontal scaling, additional database nodes (servers) are added 

to distribute the workload across multiple instances. This approach is 
often used in distributed databases or database clusters to improve 
both capacity and performance.

•	 Key benefits of horizontal scaling:
•	 Improved scalability since new nodes can be added as needed
•	 Load distribution helps prevent overburdening a single node, 

improving reliability.
•	 Enhanced fault tolerance since the failure of one node doesn’t 

lead to complete downtime.
•	 Limitations of horizontal scaling:

•	 Requires database sharding or partitioning to distribute data 
effectively.

•	 May necessitate more complex application design to work with 
a distributed database.

•	 Initial setup and maintenance of a cluster can be more 
challenging.

Scaling a database is a critical consideration for organizations that experience 
fluctuating workloads or expect their data storage and processing needs to 
grow over time. The choice between vertical and horizontal scaling depends 
on the specific use case, budget, and existing infrastructure. In many cases, a 
combination of vertical and horizontal scaling, known as "elastic scaling," is 
used to optimize database performance and capacity based on demand.

Horizontal scaling operations are initiated by the ‘Database Service,’ which, in 
turn, requests a new resource from the ‘Infrastructure Service’ using the same 
image template employed by the other nodes in the cluster.

A new node is configured for the cluster by using the ‘cluster name’ and the 
‘autopilot pattern’ simplifies the process of adding more replicas due to the 
streamlined manner in which nodes are initialized.



50

Op 6 — Upgrades and patching

To manage upgrades and patching effectively, an additional agent can be 
employed. This agent is responsible for monitoring a set of software packages, 
periodically updating the software repository on the host, and comparing 
newly available versions with the installed packages. This ensures that the 
latest patches and updates are applied to maintain the security and stability of 
the database and other agents.

Here are some key points to consider in this regard:

•	 Patch management
Database vendors regularly release critical patch updates to address 
software bugs, vulnerabilities, and security issues. Keeping the database 
software up to date is crucial for protecting against known threats. The 
patch management process may involve cluster upgrades, but these can 
often be executed without requiring database downtime.

•	 Agent updates
The agents responsible for managing the database also require updates to 
address bugs, improve functionality, and enhance security. Keeping these 
agents up to date with upgrades and fixes is vital to ensure that they can 
effectively monitor and manage the database.

•	 Rolling upgrades
When performing upgrades, particularly in a clustered environment, a 
common approach is to execute rolling upgrades. In a rolling upgrade, one 
node at a time is taken offline, patched with software updates, and then 
brought back online. This approach minimizes downtime and allows for the 
gradual application of upgrades.

•	 Fallback mechanism
In the event of an unsuccessful upgrade on a node, it’s essential to have 
a well-defined fallback mechanism. This mechanism involves rolling back 
the changes to the previous state, ensuring that the database remains 
operational and secure.

By implementing these measures, you can enhance the security and 
reliability of your database system, ensuring that it remains resilient against 
emerging threats and vulnerabilities. Continuous monitoring, proactive 
patch management, and a well-structured upgrade process are essential 
components of a robust and secure database infrastructure.

Op 7 — Access control and multi-tenancy
Data is a critical asset, and it’s essential to integrate strong access control and 
multi-tenancy features within a database service because they ensure data 
security, resource efficiency, and the ability to meet diverse operational needs 
while complying with national and international regulations and organizational 
governance.



51

Here are some key considerations in the context of access control and multi-
tenancy:

Access control

•	 User authentication
Ensuring that data access is restricted to authorized users involves 
implementing robust authentication mechanisms. These may include 
traditional methods like username and password, advanced security with 
multi-factor authentication, or seamless integration with enterprise identity 
management systems.

•	 Role-based access control (RBAC)
A well-established framework for managing access to services. 
Administrators assign specific roles to users or groups, thereby defining 
what operations (e.g., read, write, execute) they are permitted to perform.

•	 Data-level access control
In scenarios involving multiple tenants, data-level access control becomes 
indispensable. This approach ensures that users can only interact with 
data they have explicit permission to access, thus mitigating the risk of 
unauthorized data exposure or manipulation.

•	 Audit trails
Detailed audit logs, meticulously recording who accessed the data, their 
actions, and timestamps, play a pivotal role in security monitoring and 
compliance. These logs offer insights into the system’s integrity and any 
irregularities that may arise.

Multi-tenancy

•	 Isolation
Logical or physical separation of data and configurations for various 
organizational units or tenants. This isolation prevents potential issues 
related to cross-tenant data exposure and conflicts.

•	 Resource segregation
Multi-tenancy extends to the effective allocation of computing resources, 
encompassing CPU, memory, and storage. This practice ensures that each 
tenant enjoys equitable and predictable performance, regardless of the 
shared environment.

•	 Customization
Acknowledging the unique needs of different tenants, multi-tenant 
database services should offer the flexibility for tenant-specific 
configurations, schema adjustments, and access policies. This adaptability 
caters to the diversity of requirements among tenants.



52

•	 Scaling
As the IT organization grows, the services must demonstrate the 
capability to seamlessly scale to accommodate additional tenants and 
the accompanying surge in data volumes. Scalability is paramount to 
preserving consistent performance.

•	 Efficiency
A shared resource model contributes to cost-efficiency. It enables multiple 
tenants to pool and share resources, resulting in cost savings in both 
hardware and operational expenses, as opposed to maintaining separate 
databases for each tenant.

Multi-tenancy presents several challenges, making it a complex aspect of 
software design and management. By opting for Kubernetes as our runtime 
environment for our platform, we gain access to various features, such as 
namespaces, which can be utilized for multi-tenancy. 

Namespace isolation is the practice of allocating a separate namespace to each 
tenant, and it can be categorized into two distinct implementations:

•	 Soft multi-tenancy
This approach is typically used in scenarios where there’s a high level of 
trust among all the tenants in your cluster. It’s commonly applied when 
a cluster is shared among various teams or departments within a single 
organization. Soft multi-tenancy is relatively easy to implement because it 
relies on trust as its core principle, and there’s a minimal need for stringent 
restrictions.

•	 Hard multi-tenancy
In contrast, hard multi-tenancy involves imposing multiple restrictions and 
consequently comes with several limitations. While soft multi-tenancy is 
straightforward to implement, hard multi-tenancy is often considered the 
best practice. It’s suitable for situations where trust levels vary, and a high 
level of separation is necessary.

Within a hard multi-tenancy framework, networking rules must be defined 
to prevent communication between namespaces. Permissions must be 
configured with precision and a strict approach. Essentially, all aspects 
of the Kubernetes cluster need to be meticulously organized within 
namespaces. 

However, it’s worth noting that implementing hard multi-tenancy does 
present its own set of challenges.

Implementing multi-tenancy from the ground up is a challenging task that 
demands substantial effort, time, and precision to achieve the desired results 
accurately. As an alternative, our platform is adopting a third party open-
source solution, for example vCluster, which is introducing the concept of 
virtual clusters.



53

Separate 
Namespace

Separate  
Cluster

Isolation very weak strong very strong

Access for tenants very restricted vcluster admin cluster admin

Cost very cheap cheap expensive

Resource sharing easy easy very hard

Overhead very low very low very high

The data plane, i.e., the database nodes, will operate on a non-shared model. 
In this setup each tenant is assigned their own dedicated set of virtual 
machines, ensuring that resources are not shared with other tenants

The control plane and all other related services for each tenant operate within 
their respective, independent virtual clusters.

Op 8 — Data migration

Data migration to another environment such as a public cloud is the process 
of moving data and workloads from one environment to another. This may be 
done for various reasons, such as cost optimization, improved performance, 
compliance requirements, or to take advantage of specific services or features 
offered by a new cloud provider.

There are two methods for migrating a database: live migration, which allows 
the database to continue operating during the migration, or an offline migration 
during a maintenance window where changes to the database are temporarily 
halted.

A live migration is a complex operation and typically includes establishing 
replication between two database clusters. The new database cluster is 
initially restored from the most recent backup taken on the original database 
cluster before replication is configured between them.

During the transition phase when switching to the new database cluster, read 
traffic can be directed to both database clusters. At a certain point, write traffic 
is halted on the original database cluster. Wait until the replication on the new 
database cluster catches up before finalizing the transition.

An offline migration is simpler because it depends on a clearly defined 
maintenance window during which no changes are permitted in the original 
database cluster. Once the maintenance window has begun and all changes 
are completed, a backup is created on the original database cluster, which is 
then used to seed a database cluster in the new environment.



54

In our platform, offline migration is a straightforward process. A new cluster is 
created where the initial primary node is seeded with the most recent backup 
from the original cluster in the preStart phase.

You now understand essential DBaaS elements and core principles, the Day 
2 ops framework, and how to build your DBaaS according to the 8 essential 
operational routines. But, what does the high-level architecture actually look 
like and what core services are needed to bring it to life?

Bringing Day 2 ops to life:  
a provisional architecture
As mentioned earlier, your DBaaS should be built around a services 
architecture that is based on essential operational routines that you will carry 
out from Day 2 and beyond. 

Core services

•	 API gateway
The front end for API requests, it routes the request to the appropriate 
backend service.

•	 Databases
Provides access to database related functionality such as creating, starting, 
scaling, and deleting databases.

•	 Configurations
Provides configurations, credentials, settings for services, agents and 
database nodes. Capability to utilize secrets management solutions such as 
AWS Secrets Manager, Vault, and various others.

•	 Image / service catalog
Provides access to image repository related functionality to manage, store 
and access virtual machines images on public or private cloud. These 
images serve as a template to launch new virtual machines when creating 
and scaling databases.



55

•	 Infrastructure
Provides access to cloud infrastructure provisioning such as creating, 
updating and terminating virtual machines and other key resources on 
public or private clouds.

•	 Storage
Provides access to cloud storage-related functionality for storing, 
managing, and accessing files stored on both public and private cloud 
providers. It includes the capability to manage volumes and object storage.

•	 Notifications
Generates and delivers notifications and alerts in various forms like emails, 
push notifications etc. Capability to utilize incident management solutions 
such as OpsGenie, PagerDuty, ServiceNow and more.

•	 Backups
Provides access to backup and restore related functionality such as 
scheduling and restoring backups.

•	 Upgrades
Provides access to software upgrade related functionally for agents and 
database nodes. Maintains a record of currently installed and newly 
available versions of agents and database packages.

•	 User IAM (identity and access management)
Provides authentication and authorization with role-based access using 
for example LDAP authentication and OAuth authorization services — 
generates and manages USER_TOKEN for authentication and authorization.

•	 Users
Provides access to user-related functionality such as creating, updating and 
deleting user accounts.

•	 Agents
Provides access to agent-related functionality such as creating, updating 
and deleting agents associated with a User.

•	 Agent IAM / token authentication
Generates and manages AGENT_TOKEN for authentication and 
authorization.



56

At this point, you have a detailed blueprint, operational guidelines, and a 
provisional services architecture that you can use to bring your Sovereign 
DBaaS to life. Your individual decisions, including whether you want to build 
everything alone or include off-the-shelf components, will depend on your 
team’s capabilities and business requirements. Most often, the latter scenario 
is most practical. To that end, we will show you how using Severalnines 
solutions as your orchestration layer would look like.

*A note on tool selection

There are a plethora of tools available for every component in your stack. 
When considering tools and components of your system, it is vital to 
understand the importance of each component and the plans that may need 
to be put in place to ensure its usage. When looking at open-source options, 
you need to consider how robust the project is and plan for license changes. A 
prime example of the latter is Elasticsearch.

Their license change in 2021 was put in place to limit competing service 
providers to sell the open-source offering of Elasticsearch. Largely, this did 
not affect users of Elasticsearch running it in their own environments. But for 
some users, changes to those tools broke environments or restricted their use; 
causing costs and, in some cases, forcing migrations to alternatives.

https://www.elastic.co/pricing/faq/licensing


57

Section III: abstracting the 
orchestration layer with 
Severalnines solutions

By this point in the guide you’ve seen how building a DBaaS solution for your 
organization can be a complex and time-consuming process. Implementing a 
Sovereign DBaaS is not a question of yes or no but a question of degree. For 
instance, it is not feasible or even preferable to build everything on your own; 
luckily, you don’t have to.

As the heart of the DBaaS, the orchestration layer needs to be efficient, robust 
and reliable. As such, it is an area where you might want to consider bringing 
in a purpose-built tool. The caveat? It needs to be easily interchangeable and 
not tightly coupled to your databases — to highlight what this might look like 
in practice, we’ll use our own tools to illustrate. After all, we’ve spent the last 
12 years building and refining tools to provide the benefits of database ops 
automation / orchestration and control. 

First, we’ll introduce ClusterControl, Severalnines’ original VM-based solutions, 
and CCX Sovereign, our solution to the next generation of DBaaS; bringing the 
features of ClusterControl to a cloud-native solution that can be installed on 
any Kubernetes cluster. Lastly, we’ll give you a rubric for choosing the best tool 
for your use case.

ClusterControl:  
DB ops automated, just add VMs
ClusterControl is downloadable automation software that empowers users to 
efficiently execute end-to-end database operations with minimal intervention. 
While ClusterControl is not a DBaaS itself, it can help simplify the process of 
building your own DBaaS while ensuring that you retain complete control over 
database infrastructure.

With ClusterControl acting as the control plane, you can seamlessly deploy 
both open-source and proprietary databases on-premises, in the cloud, or in 
hybrid settings, and automate their lifecycle operations as a private DBaaS 
while retaining full control.



58

ClusterControl operational features
ClusterControl brings together an extensive range of operations, offering a 
complete DBaaS experience that adapts to any environment.

1.	 Hybrid operations
You can efficiently operate your databases in any environment, whether on-
premises, in the cloud, or both, using a single, unified interface.

2.	 Deployment
Easily launch high-availability clusters and load balancers with just one 
click, streamlining your infrastructure setup and reducing deployment time.

3.	 Security
ClusterControl allows you to effortlessly configure database settings, 
access control, and encryption for data at rest and in transit, ensuring a 
secure environment for your data.

4.	 Backup & restore
Protect your data integrity with ClusterControl’s automated, verified 
backups and point-in-time recovery, minimizing data loss risks and 
ensuring business continuity.

5.	 Scaling
Adapt your cluster to meet fluctuating demands by scaling up or down as 
needed with ClusterControl’s flexible scaling options.

6.	 Failover
Trust ClusterControl’s automated failover technology to maintain high 
availability and eliminate downtime, keeping your database operations 
running smoothly.

7.	 Monitoring
Gain insights into your database infrastructure with ClusterControl’s 
customizable dashboards and real-time alerts, allowing you to proactively 
address potential issues.

HELP



59

 

8.	 Integration
ClusterControl integrates seamlessly with popular tools and platforms, 
making it simple to incorporate into your existing workflows and processes.

9.	 Upgrades
ClusterControl helps reduce maintenance overhead by automating updates 
and patches, ensuring your database systems stay current with the latest 
improvements and security enhancements.

10.	Management
Efficiently manage your database configurations and performance using 
ClusterControl’s battle-tested, editable templates and granular monitoring 
features. This makes it easy to optimize your databases and maintain peak 
performance.

11.	Reporting
ClusterControl provides comprehensive operational reports on the health 
and stability of your database operations, giving you valuable insights and 
enabling data-driven decision-making.

12.	DevOps tools
With CLI, API, and GUI options, ClusterControl offers a versatile interface 
that caters to your preferred methods of interaction. This flexibility allows 
you to seamlessly integrate ClusterControl into your DevOps workflows.

Features highlight: security

ClusterControl provides many advanced features to ensure your data is secure, 
including database encryption and advanced user management.

1.	 Role-based access control
Through its advanced user management system, ClusterControl ensures 
that only authorized team members have direct access to the database. 
It restricts access to configuration files exclusively to root-level users, 
enhancing the security of your database infrastructure.

2.	 Single sign-on integration
ClusterControl seamlessly integrates with major single sign-on systems 
such as LDAP and Active Directory, providing an additional layer of security 
and control over user access to the database.

3.	 Operational security
Ensuring compliance with database operational security processes can be 
challenging, but ClusterControl offers reporting and auditing tools to help 
you maintain compliance with industry standards or your organization’s 
specific requirements.

4.	 Change logging / audit logging
ClusterControl logs all user activities performed while administering 
databases through the platform, allowing you to monitor actions and 
maintain compliance more effectively.



60

5.	 End-to-end encryption
With ClusterControl, your data remains secure with TLS encryption both 
in transit and at rest. This end-to-end encryption ensures that sensitive 
information stays protected from unauthorized access.

ClusterControl architecture
Overview

ClusterControl’s architecture is lightweight, consisting of various components, 
including an end-user web-based portal, a command-line client, a controller 
for managing and monitoring database clusters, and several services for 
integration, alerting /  notifications. By leveraging agentless monitoring, 
it requires no additional software installation on nodes other than SSH 
connectivity, installation is quick and straightforward.

Additionally, the platform offers command-line and RPC (Remote Procedure 
Call) APIs, which seamlessly integrate with widely-used configuration 
management software like Ansible and Terraform. These integrations enable 
users to combine their expertise in these tools with ClusterControl’s "headless" 
options to create a fully automated private database management service 
tailored to their organization’s needs.

ClusterControl can be deployed in various production environments, including 
local data centers, running on the same private subnet as the database nodes, 
in air-gapped environments, or the cloud. It supports physical servers or 
virtual machines provisioned using solutions like VMware or Nutanix, ensuring 
flexible infrastructure management.

ClusterControl is also compatible with Virtual Private Networks (VPNs), 
allowing it to manage clusters and nodes across local data centers, private or 
public clouds as if they were all part of the same private network. This ensures 
all traffic is encrypted and secure, no matter where the nodes are physically 
located. 



61

Components

Component Role

ClusterControl 
controller (cmon)

The brain of ClusterControl. A backend service performing 
automation, management, monitoring, and scheduling tasks. All the 
collected data will be stored directly inside the CMON database.

ClusterControl GUI A web-based graphical user interface (GUI) to visualize and manage 
the clusters provisioned by ClusterControl. It interacts with the 
CMON controller via remote procedure calls (RPC).

ClusterControl SSH Optional module for web SSH console via WebSocket. It only works 
with Apache 2.4+.

ClusterControl 
notifications

Optional module for integration to third-party messaging, notification 
and incident management services.

ClusterControl  
cloud

Optional module for integration with cloud providers.



62

Component Role

ClusterControl  
cloud file manager

Optional module to interact with storage objects on the cloud, with 
dependency on clustercontrol-cloud package. Primarily used to store 
backups in S3-compatible storage

ClusterControl CLI
A command-line interface (CLI) to manage and monitor clusters 
provisioned by ClusterControl. It interacts with the CMON controller 
via remote procedure calls (RPC).

Use case highlight: ABSA

Serving 12 countries, ABSA Group Limited is one of Africa’s largest diversified 
financial service groups. In 2017, they began a digital transformation in an 
effort to reduce costs and gain greater sovereignty over their data and the 
infrastructure that supports it.

The core motion of this effort was migrating away from a proprietary stack 
that included Oracle, SQL Server, and DB2 to open-source one with MySQL, 
MariaDB, PostgreSQL, MongoDB and Redis — a key question revolved around 
lifecycle management.

Specifically, they needed a platform that could handle the operational lifecycle 
of their complex polyglot estate across environments. Thus, they chose the 
interdependent route and cast about for a ready-made solution to serve their 
requirements. 

That search proved difficult; there are few portable, full-spectrum solutions 
available. But there is ClusterControl, which they were able to successfully 
build an internal hybrid DBaaS around to orchestrate the operations of their 
3000+ instances.

Their Head of DBaaS, Kevin Naik, is concise, "ClusterControl enabled us to 
build automation around the platform for self-service provision while being 
able to determine the patterns of deployments consistently without DBA 
involvement."

Read more about ABSA’s story on our website

CCX Sovereign: your DBaaS,  
in your cloud(s)
Built on top of the pressure-tested ClusterControl, CCX is ClusterControl for the 
cloud native world. CCX runs in any Kubernetes cluster and can be configured to 
work with your own infrastructure, OpenStack or public cloud providers, giving 
you true sovereignty over your data stack with a cloud-native experience. 

https://severalnines.com/case-studies/absa-case-study/


63

CCX allows you to deploy, manage and monitor database clusters into 
configured clouds at a very competitive total cost of ownership (TCO). Deploy 
a database cluster in your configured cloud, then connect to the database 
cluster via multiple ways like VPC peering or public IP address with advanced 
traffic control. 

Unlike traditional DBaaS solutions, CCX Sovereign lets you retain complete 
control and sovereignty over your database infrastructure by providing the 
functionality of a traditional DBaaS within your own infrastructure, a control 
plane that you own using your hardware and saving backups to your storage.

CCX features
Supports hyperscalers, local clouds and private environments
CCX supports deploying to major hyperscalers like AWS, local cloud providers 
such as SafeSpring, and your own infrastructure using solutions like Openstack.

Set and forget database deployments
Building upon the powerful ClusterControl platform, CCX offers fully managed, 
highly available SQL and NoSQL deployments that simplify database 
management.

Granular observability
CCX provides visibility into cluster performance down to the query level, 
enabling efficient troubleshooting and issue resolution. Metrics and logs 
for deployed databases, as well as CCX itself, can be pushed to your own 
observability stack, as well as end users.

Automated backups
With CCX, full database backups are taken daily, and incremental backups are 
performed every 5 minutes, ensuring your data is secure and up-to-date.

Scaling and storage management
Scale your databases by adding read-replicas, increase the storage capacity or 
promote a new primary.

Granular user management
CCX offers customizable access privileges, enabling you to determine the level 
of access each user has to your database, thereby ensuring better control and 
security.

Plug-and-play integrations
Integrate CCX effortlessly into your workflows using integrations with tools 
such as Terraform workflows. Your developers can use the UI or interface using 
the OpenAPI, as well as the CLI; CCX works how and where you work.

CCX Features {
  "status": "loading",
  "progress": "87.5%",
  "goto": "nextpage"



64

Security
CCX prioritizes security and offers a comprehensive set of features to ensure 
the protection and privacy of your data.

1.	 Stateful in a stateless world
By providing dedicated virtual machines (VMs) for your database instances, 
CCX reduces your attack surface by ensuring that deployments are isolated, 
configured and managed independently. Security updates, configuration 
and resource changes can be applied in isolation.

2.	 Encryption from source to destination
To protect your sensitive data from eavesdropping, CCX employs advanced 
encryption technology for communications between the client and the 
server. By using TLS encryption, CCX ensures that your data remains 
secure as it travels between points in the network.

3.	 Default configurations from experts, modifiable by you
CCX sits and runs on your network, interfacing with any resources that 
your Kubernetes cluster has access to; simplifying hybrid setups that utilize 
the power of solutions like Wireguard, as well as integrating with cloud 
provider solutions, like Amazon’s VPC peering or traditional VPNs.

CCX also employs advanced firewall rules by default to safeguard your data from 
network threats and unauthorized access. You can go a step further and create 
whitelists, granting specific IP addresses access to your databases, ensuring  
fine-grained control over who can access your data, further enhancing security.

  "yourehere": "nextpage",
  "progress": "100%",
  "index": "featurehighlight"
}



65

Choosing the correct solution  
for your use case
Choosing the optimal Severalnines solution primarily comes down to two 
differentiating factors, where you want your stack to fall on the control 
spectrum and your preferred deployment type. To the former, the rubric below 
can serve as a general rule of thumb: 

•	 If you need "Full" control, choose ClusterControl.
•	 If you need "Some" control, choose CCX Sovereign.
•	 If you are okay with "Traditional DBaaS," choose CCX Cloud.

Otherwise, the table below provides additional parameters, such as 
management level, to help you decide between implementing ClusterControl 
or CCX Sovereign or Cloud.

ClusterControl CCX Sovereign CCX Cloud

Deployment types On-premise, virtual 
machines, dedicated 
hardware

Openstack, 
on-premise, public 
cloud providers

Public cloud 
providers; global and 
regional

Control level Full Some Traditional DBaaS

Management level Assisted Fully managed Fully managed

Observability Logs, Metrics, Alerts Logs, Metrics, Alerts Logs, Metrics, Alerts

Lastly, never forget that you can always choose the other end of the spectrum, 
complete control, and exclude external tools. The point is to not prematurely 
focus on which tool you should choose over another, but to determine the 
implementation and its particulars according to your current needs while 
ensuring that you can adjust to future needs.

CCX Cloud: from Severalnines,  
run by Severalnines
As well as the option to run your own DBaaS, using your own infrastructure, 
Severalnines offers CCX as a managed service, CCX Cloud. If you want the 
traditional DBaaS experience, with the expertise from decades of experience 
and support for regional cloud providers, CCX Cloud is the choice for you. 



66

Wrapping up
Although not a trivial endeavor, creating your own DBaaS offers numerous 
benefits by allowing you to tailor your infrastructure and operational processes 
to your use case, weaving in the level of control necessary to determine what 
your database environment looks like and how it is run.

Whatever the leverage point you want to exploit, be it cost-effectiveness in the 
hardware, software, and deployment options you choose, avoiding vendor 
lock-in, or extensibility to adapt to changing business needs, you will possess 
the freedom to build a data stack that is fit-for-purose.

What we’ve laid out is not a playbook or architecture to ape, but a helpful 
guide to help you rethink DBaaS as an implementation model and to 
understand that you have more choices than ever in determining what and how 
you want to build the core stack supporting your application.  
 
Now get to building!

© Copyright Severalnines 2024. All Rights Reserved.


	Section I: DBaaS as an implementation model
	Traditional DBaaS implementation model
	Sovereign DBaaS implementation model
	Markers of Sovereign DBaaS
	Principles of Sovereign DBaaS
	First principle: end-user independence
	Second principle: environment / ecosystem agnosticism
	Third principle: embracing open-source software (OSS)
	Option 1: independent
	Option 2: interdependent



	Section II: DIY DBaaS in practice
	Foundation points: DBaaS environment, elements and design principles
	Environment
	Elements
	Platform
	Compute
	Storage
	Networking
	Design principles


	DBaaS routines and blueprint: the Day 2 framework
	Day 2 ops routines
	Scaling and high availability
	Monitoring and alerting
	Backups for onsite and offsite storage
	Point-in-time recovery
	Upgrading and patching
	Access control / user access
	Data migration (on-premises to cloud)

	Day 2 ops blueprint
	Platform architecture
	Database provisioning
	Monitoring and alerting
	Backup and recovery
	Scaling and high availability
	Upgrade and patch management
	Security
	API integration
	Self-service user portal
	Solution spotlight — abstracting the event-driven architecture with Dapr


	The Day 2 ops framework: operational guidelines
	Op 1 — Database provisioning and deployment
	Op 2 — Lifecycle management and high availability using an autopilot pattern
	Health checks
	Automated failover
	Primary and replica node and cluster state examples:

	Op 3 — Observability
	Logs (syslog)
	Metrics and events (Telegraf, other exporters)
	Observability spotlight: database query performance

	Op 4 — Backup and recovery
	Data structures examples 
	Backup service architecture
	Backup agent initialization and registration
	The backup process
	Restoring backups
	Verifying backups

	Op 5 — Scaling
	Op 6 — Upgrades and patching
	Op 7 — Access control and multi-tenancy
	Access control
	Multi-tenancy

	Op 8 — Data migration

	Bringing Day 2 ops to life: a provisional architecture
	Core services


	Section III: abstracting the orchestration layer with Severalnines solutions
	ClusterControl: DB ops automated, just add VMs
	ClusterControl operational features
	ClusterControl architecture
	Overview
	Components


	CCX Sovereign: your DBaaS, in your cloud(s)
	CCX features
	Supports hyperscalers, local clouds and private environments
	Set and forget database deployments
	Granular observability
	Automated backups
	Scaling and storage management
	Granular user management
	Plug-and-play integrations
	Security


	CCX Cloud: from Severalnines, run by Severalnines
	Choosing the correct solution for your use case
	Wrapping up


