
Sovereign
DBaaS

Developers Guide to

S9S GUIDE

3

Traditional DBaaS (database-as-a-
service) is falling short in meeting the
evolving needs of businesses today. While
DBaaS has certainly made it easier for
companies to set up and manage databases,
it has also introduced a number of new
challenges and risks. The standard approach
is increasingly inflexible, leaving companies at the mercy of cloud and
other 3rd-party vendors, an ever-changing regulatory landscape, license
instability, and unreliable cost structures.

Many organizations opt for a traditional Database as a Service (DBaaS)
because it’s easily implemented and managed. They have made this
choice because it allows them to focus their resources on building and
improving their products and driving results for their business, instead of the
administration of the database layer.

DBaaS lets organizations test ideas more quickly, cheaply, and with
a lot less risk. They don’t have to make large, upfront commitments to
infrastructure and they don’t have to recruit for and build out large teams
of infra and database experts. These freedoms enable smaller startups and
even non-profits that otherwise wouldn’t have the resources to bring their
ideas to life in days past. Cloud and the implementation schemes tied to it
have heralded an unprecedented age of innovation due to improving access to
compute, storage, and lower-level systems that applications are built on.

But there are several business risks associated with the standard DBaaS
model: vendor, environment, and ecosystem lock-in, managed database
license instability, key person dependencies, and vulnerability to changes in
data protection regulations. These risks can be costly, disruptive, and difficult
to mitigate.

https://severalnines.com/blog/what-is-dbaas-database-as-a-service/

4

Sovereign DBaaS is a new implementation model that addresses the
business risks of traditional DBaaS in a number of ways, such as by providing
true control of the database layer through minimizing multiple forms of lock-in.
For instance, it minimizes environment and ecosystem lock-in because the
database is decoupled from the underlying infrastructure, so an organization
can place their workloads where it makes most sense.

The license stability angle doesn’t get much play when open-source licenses
are changed. But this instability begs the question, ”Can an organization using
managed database services, open-source or not, be said to have true control
over their databases if they can lose access to it when the vendor changes
their license, as in the cases of MongoDB and Elasticsearch?”

The decoupling of infrastructure and database, and the ability to freely and
confidently deploy open-source and source-available databases, ultimately
enable organizations to build out a more resilient database layer that is
aligned with the needs of the business.

True sovereignty means intelligently utilizing technologies to maintain the
ownership and control of your database layer, which extends to your actual
data. Sovereign DBaaS allows for ultimate influence over the full spectrum of
business risks related to your data.

We created this guide to help developers understand:
 ✓ The importance and power of data sovereignty.
 ✓ The differences between traditional DBaaS and Sovereign DBaaS.
 ✓ The pillars of sovereign data and the principles of Sovereign DBaaS.
 ✓ Application use cases for Sovereign DBaaS.
 ✓ How to become data sovereign by rolling your own DBaaS.

5

First, we should define traditional DBaaS and Sovereign DBaaS. The key
distinction comes down to this question: who owns your data?

What is DBaaS?

Before we dive deeper, let’s define DBaaS by starting with the goal —
reliable database ops at scale — and a DBaaS implementation achieves this
via automation. From there, we can define two implementation concepts,
managed and Sovereign DBaaS:

 ✓ Managed DBaaS - DBaaS run on a cloud-based provider as a
consumption-based service.

 ✓ Sovereign DBaaS - DBaaS deployed on infrastructure you control via
homegrown and purchased tools.

The concept of DBaaS is usually associated with the idea of a managed
database service that allows you to create and operate databases without
having to build and manage underlying infrastructure or database software.
A DBaaS provider takes care of all these things for you, so you can simply
provision and deploy your databases using the provider’s interface or other
tooling, such as an API or CLI. The provider handles the technical details
of the implementation for the database infrastructure and manages the
database software’s operations, including failover, recovery, backups, and
patches.

But while DBaaS is commonly associated with managed service providers
who handle operations and assume responsibility for the database layer,
DBaaS is ultimately an implementation concept that is about ensuring
reliable database operations at scale through the use of automation. A
DBaaS implementation concept doesn’t necessarily have to be tied to who is
actually delivering it. You can implement DBaaS using third-party providers,

6

yourself, or both, e.g., depending on workload requirements. That optionality
naturally allows for different implementation concepts. In this guide, we are
breaking down DBaaS into two distinct concepts: Traditional and Sovereign.

Managed DBaaS

A traditional DBaaS concept is mediated through service providers in the
public cloud and covers database layer responsibility, control, and location.
For example, Oracle MySQL Cloud Service, AWS RDS, and Aiven for MySQL
are fully managed services wherein all operations, including provisioning,
failover, recovery, and deprecation, are handled by the vendor’s control plane
and backed by an SLA from the provider. There are benefits to this model,
which is why it’s exploded in popularity. In short, these benefits come down
to leveraging focus and expertise. By offloading database layer operations,
organizations are able to move on and focus on developing the applications
that deliver business value. But, leveraging the focus and expertise of a
traditional DBaaS provider is a trade-off for additional business risks that
become more acute over time as an organization grows in sophistication and
the landscape changes around it.

Sovereign DBaaS

Sovereign DBaaS is primarily distinguished from traditional DBaaS by
allowing for organizations to affect greater degrees of control over their
database layer.

In contrast to traditional DBaaS, Sovereign DBaaS is an implementation
concept that entails organizations themselves automating their database
layer operations, either fully or partially, using homegrown code, open-source
tooling, and/or off-the-shelf proprietary software in any environment, e.g.

7

cloud, on-premises, or hybrid. Historically, this would be almost impossible
to do without Herculean effort. But it is now possible for any organization
to implement their own Sovereign DBaaS, enabling organizations to
get the benefits of DBaaS while mitigating the looming business risks
associated with traditional DBaaS, such as license instability and undesirable
dependencies.

Sovereign DBaaS lets you deploy databases in an environment-agnostic
manner to vendor-neutral environments so that you retain complete control
over your databases and data. You control the locations of your dedicated
tenants. The location of the infrastructure may be hosted on-premises, in a
colocation facility, or in a hyperscale cloud provider facility as infrastructure-
as-a-service (IaaS). The important distinction is that the choices are yours,
and you can change them at any time for any reason.

Beyond compliance and legal controls, Sovereign DBaaS enables ultimate
control for all business risks related to data. Specifically, sovereign control
mitigates vendor, environment, and ecosystem lock-in, open-source
license instability, key person dependencies, data regulation changes, and
infrastructure cost unpredictability.

Traditional DBaaS vs. Sovereign DBaaS

Managed DBaaS Sovereign DBaaS

Control

Vendor controls and
manages the database
infrastructure and
software for you — you
have limited control
over fundamental
choices.

You own and can manage your
infrastructure and databases to suit
your needs. You aren’t limited in how
you can change your service and
have the power to fine-tune for your
use cases.

8

Managed DBaaS Sovereign DBaaS

Access

In general, a black box
— you can’t get to the
deeper levels. When
something goes wrong,
you are reliant on the
provider to fix it because
you lack visibility and
access.

You have root access to the database
and the infrastructure layer to varying
degrees. You can make core operational
changes to database systems to better
align them with your use case. When
something goes wrong, you have direct
access to fix it.

Portability

Little to no portability —
designed so that you are
dependent on a service
or vendor ecosystem.
Porting to another
provider can be very
difficult.

No vendor or environment lock-in. With
true open-source databases and tooling
that can be implemented anywhere,
you can easily migrate to another cloud
provider or even on-premises.

Environment

Environment choices
are limited to vendor
offerings, usually the big
3 public clouds. Hybrid
environments are far
and few between and
often lock you into an
ecosystem.

Unrestricted choice of environment,
dependent only on your own
requirements. Utilize any combination
of clouds, on-premise implementations,
and hybrid setups.

User experience

A single user experience
but limited flexibility.
Using multiple vendors
fractures user experience
and can be prohibitively
challenging.

You can combine homegrown work
with off-the-shelf products that
accommodate multiple DBs and
environments. This allows for a more
flexible and customizable solution and
better user experience.

Security and
privacy

You share responsibility
with the vendor and
adopt the security and
privacy frameworks they
offer.

You can configure security and privacy
based on your own requirements and
frameworks.

9

Managed DBaaS Sovereign DBaaS

Licensing

Offers access to
multiple license types,
but also subject to
changes in licenses
which may result in
losing access to the
product or some of its
key features, posing
sustainability risks and
vendor lock-in risks.

You are not subject to the same
license restrictions as DBaaS
vendors, with the freedom to
choose the database technologies
that best suit your organization’s
needs without concern over license
instability.

Costs

Traditional DBaaS
operates under an
hourly consumption
model that is billed
monthly. Few of
these services are
straightforward to cost
out.

While they are cost-
efficient at small scale,
many customers are
caught by surprise
when they reach large
scale implementations.

You have the ability to determine the
level of control you want to assert
over your deployment stack, so you
can better control operating costs.
Also allows for cost tracking and
build more accurate models.

Control
Traditional DBaaS using a managed service means the vendor manages
your database infrastructure and software. You don’t have to do any of the
operational work, giving you more time to focus on getting to a finished
product or application. This sounds great, except you have no control over
your database infrastructure and software.

10

Sovereign DBaaS offers much more control than traditional managed service
providers by giving you the ability to affect change at every level. With
Sovereign DBaaS, you have the flexibility to self-manage your databases and
determine the level of control you have over your infrastructure. This allows
you to have more choice in the type of infrastructure and databases you use,
as well as how they are configured and tuned.

Complete ownership gives you greater control over your data and empowers
you to make decisions that best suit your needs. In contrast, using a
managed service provider limits choice, offering little to no control over how
infrastructure and databases are coupled and tuned, and you ultimately own
nothing.

For example, you may need to place workloads in specific environments and
locations based on business and regulatory requirements, such as those
applicable in the banking sector. That doesn’t include access requirements
for the databases that underlie critical apps. Sovereign DBaaS gives you
complete control over where and how you administer your database layer.
With a traditional DBaaS implementation, you will have limited to no control
over their location and administration.

Sovereign DBaaS enables full control of database technologies, enabling
any custom combination of proprietary, open-source, or mixed/gray licensed
databases. Rather than being forced to use certain database technologies
based on a vendor’s offerings, you have the option to roll your own
individually optimized solutions.

Access
Traditional DBaaS offerings are often referred to as a “black box” because
users have little visibility and access into the deeper levels of the service.
This means that when something goes wrong with the service, users are

11

reliant on the provider to fix the issue. This can result in delays and a lack of
control over the resolution of the problem.

Likewise, users are not able to intervene in lower-level operations, such as
configuration and tuning, which can limit their ability to optimize the service
for their specific use case. This lack of visibility and control can make it
difficult for users to understand and troubleshoot issues, and can ultimately
impact the performance and reliability of their application.

In contrast, Sovereign DBaaS provides users with root access to the database
layer, as well as the infrastructure layer to varying degrees. This means that
users have the ability to make core operational changes to their database
systems, such as configuring and tuning, in order to better align them with
their specific use case. This level of control and access allows users to
optimize the implementation for their needs, resulting in better performance
and reliability. Additionally, when something goes wrong, users have direct
access to the underlying systems, which allows them to quickly troubleshoot
and resolve issues. This empowers users to take ownership of their data and
manage it in a way that best suits their needs.

Portability
Companies that use traditional DBaaS will inevitably face the dilemma of
vendor lock-in. Whether you choose an open-source, mixed, or proprietary
licensed database, once you deploy it with a traditional DBaaS, you face a
considerable challenge if you one day want to leave. Traditional DBaaS is
designed so that you are fully dependent on that service — they offer little to
no portability. Many providers offer proprietary databases with proprietary
data formats. So, moving would likely require that you transform your data
into a new format for the new target database.

The difficulty of porting databases comes down to two key considerations:
provider and environment. In terms of providers, migrating away from

12

proprietary databases can be the most difficult, as it often requires a
complete refactoring of the data and application. Open-source databases
are the next most difficult, as migrating away would require partial
refactoring, dealing with different APIs, nomenclature, and semantics. For
example, transferring from Aiven for Kafka to AWS MSK would require such
refactoring. Or migrating from AWS RDS would require a logical backup,
i.e. reading data from the database, as AWS does not provide access to the
actual backup files. However, if you implement open-source via a Sovereign
DBaaS scheme, it’s closer to a 1:1 transfer because you’re not having to plug
into the above.

In terms of environments, traditional DBaaS is in the cloud by default, so you
can migrate from cloud to cloud, but you are unlikely to find a provider that
delivers their services on-premises or in a mixed environment. Additionally,
cloud-to-cloud migrations typically only entail major cloud providers like
AWS, GCP, and Azure. Even if they do provide on-premises deployment
options, they are still likely tied to an ecosystem, such as in the case of AWS
Outpost. The key difference with Sovereign DBaaS is that you are truly
free to set up a managed environment anywhere you want, without the
limitations of traditional DBaaS providers.

Overall, a key advantage of Sovereign DBaaS is that it provides more
flexibility and control over your databases, which can help to avoid vendor
lock-in and improve portability. By using open-source databases and
providing root access, you can configure, tune and manage the databases to
better align with your use case and easily migrate to another cloud provider
or even on-premises.

Environment
When it comes to choosing a DBaaS solution, one of the key considerations
is the environment in which the service will be deployed. Traditional DBaaS

13

providers often limit your environment choices to their own offerings, making
it difficult to implement a hybrid environment that meets your specific
requirements.

With traditional DBaaS, your options are limited to the vendor’s ecosystem,
which can be restrictive and make it difficult to achieve a tailored solution
that meets your business needs. For example, if your organization requires a
hybrid environment that includes on-premises and cloud deployments, you
may find that traditional DBaaS providers do not offer this option or have
very restrictive implementations. This can make it difficult to achieve the
desired level of control and flexibility over your data infrastructure.

On the other hand, Sovereign DBaaS offers unrestricted choice of
environment, dependent only on your own requirements. With Sovereign
DBaaS, you have the flexibility to utilize any combination of cloud providers,
on-premise implementations, or hybrid setups, to best align with your use
case. This enables you to tailor your environment to meet the specific needs
of your organization, whether that’s for cost savings, performance, or security.
For example, you could use a cloud provider for your production environment
and an on-premise implementation for your development and testing
environments.

Sovereign DBaaS gives you the freedom to choose the environment that
best suits your organization’s needs, without the limitations imposed by
traditional DBaaS providers. This level of control and flexibility over your
data infrastructure can help you achieve a tailored solution that meets your
specific requirements and improve the performance, security and cost-
effectiveness of your DBaaS solution.

User experience
Traditional DBaaS from a managed service provider offers a simplified user
experience with a unified interface out-of-the-box in trade for control and

14

flexibility. This is appealing for organizations that are looking for a simple
and easy-to-use solution, but it means that they have to make major
sacrifices in terms of any customization and flexibility they want to use that
isn’t part of the vendor’s services.

The control and portability offered by a Sovereign DBaaS implementation
mean that you can choose to implement one control plane across your
database layer, and thereby achieve a more consistent user experience. You
can combine homegrown work with off-the-shelf products that accommodate
multiple DBs and environments. This allows for a more unified, customizable
solution, although doing it on your own does require more work initially.

Companies often look to build their database layer with 3rd-party managed
open-source databases. A rising trend over the last few years is open-source
database vendors restricting their licenses so that they are unavailable as
services outside of the actual vendor. Mongo and Elasticsearch are prominent
examples. If your architecture calls for using services restricted in this way,
then you’d potentially have to go with multiple vendors. Multiple vendors and
different control planes fracture user experience. Additionally, organizations
that are trying to span environments, i.e. implement a hybrid scheme, may be
limited in their options with traditional DBaaS.

Security and Privacy
Security is a crucial benefit of using a DBaaS. A good DBaaS will use
encryption technologies and multiple layers of security to protect data.
A traditional DBaaS from a managed service provider uses a form of
shared responsibility model for some areas of security, usually involving
keys. Traditional DBaaS providers manage every aspect of the underlying
infrastructure and control the handling and management of your data.

This is part of the reason why there are security and privacy compliance
standards that many of the providers carry, such as ISO 27001, SOC 2, etc.

15

Depending on how you implement a Sovereign DBaaS concept, your privacy
posture will be derived from what policies you have in place, what you build,
and what off-the-shelf software you buy.

Privacy-wise, the location of the cloud hosting the DBaaS plays a significant
role. Many Western workloads are hosted by cloud providers headquartered
in the U.S., which are subject to U.S. laws that may conflict with GDPR and
other international privacy regulations. This problem will become even more
complex as more countries implement their own regulations, each with its
own unique requirements and standards.Therefore, organizations that have
operations and customers in multiple countries will face an increasingly
complicated regulatory landscape.

Additionally, there are certain workloads, such as those related to national
security, that may not be suitable for hosting in a public cloud. Sovereign
DBaaS offers a solution by giving users complete control over where they
place their workloads, making complying with multiple regulatory standards
more easily achievable.

Licensing
When implementing Traditional DBaaS, you will have access to multiple
license types such as proprietary, open-core, and open-source. However, it
also means that you will be subject to changes in licenses which may result
in losing access to the product or some of its key features, such as InfluxDB,
Kafka, TimescaleDB, Elasticsearch, etc. This poses sustainability risks,
particularly when building the database layer around managed services.

One option is to go with the database vendor themselves, which poses
vendor lock-in risks and fragmentation issues. The other option is to replace it
with another database, which can be a nightmare.

https://severalnines.com/blog/how-achieve-gdpr-compliance-documenting-our-experience-part-2/

16

With Sovereign DBaaS, you are not necessarily subject to the same license
restrictions as a vendor. Therefore, you can still freely use databases that are
no longer available as 3rd-party managed services such as MongoDB and
Elasticsearch, and you don’t have to worry about license changes rendering
your implementation strategy obsolete. You have more control over your
data infrastructure and can choose the environment that best suits your
organization’s needs without the limitations imposed by traditional DBaaS
providers.

Costs
Traditional DBaaS operates under an hourly consumption model that is
generally billed monthly. While this may seem straightforward at first, it can
quickly become complex and difficult to cost out, especially for large-scale
implementations. One of the biggest challenges with traditional DBaaS is the
lack of transparency around costs. Many customers are caught by surprise
when they reach large scale, as they discover that the costs of running their
database have skyrocketed.

In contrast, with Sovereign DBaaS, organizations can better control operating
costs because they have the ability to determine the level of control
they want to assert over their deployment stack, e.g. tools, databases,
environments, providers, etc. Additionally, with Sovereign DBaaS, they can
better track costs, helping them better predict and manage their expenses.

Other ways Sovereign DBaaS reduces costs include:

 ✓ The use of open-source databases.
 ✓ Adding guardrails to improve cost predictability and transparency.
 ✓ Distributing workloads across more cost-efficient hybrid multi-cloud
deployment options.

As you can see, the differences between traditional DBaaS and Sovereign
DBaaS impact many aspects of deploying and operating databases. But

17

the most critical benefit Sovereign DBaaS brings is true data ownership
or data sovereignty. In the next section of this guide, we’ll expand on key
concepts and define the principles and pillars of data sovereignty.

II. Sovereign DBaaS means true
data ownership
Data sovereignty as a conceptual framework means leveraging all available
technologies and following the best-known practices to manage all the
business risks associated with your data. We explained above the concept
of Sovereign DBaaS and how it differs from traditional DBaaS solutions. In
brief, it comes down to the level of control you have over your database layer.
Possessing control over your database layer is ideal for many reasons, not
least of which is the ability to handle increasing compliance requirements and
mitigating assorted business risks. This derives from the flexibility to freely
adapt to ever-changing conditions.

Data legislation, privacy, and residency

Most countries have laws regarding the handling and processing of data,
and those laws mostly revolve around consumer privacy rights. If your
business operates in multiple countries or handles data for citizens in certain
areas (e.g., European Economic Area (EEA), California, Canada), you need to
manage your data effectively to comply with all applicable privacy laws and
regulations.

Managing data against multiple different data regulations simultaneously
presents a major challenge that becomes especially difficult without
sovereign control. Let’s take a look at some notable data laws:

18

 ✓ GDPR — The EU General Data Protection Regulation (GDPR) requires
that companies have processes to ensure the security and privacy of the
personal information of citizens located in the EEA. The law has numerous
requirements based on data concepts such as fairness, transparency,
accuracy, accountability, and confidentiality. GDPR is consent-based
(opt-in); companies must have consent before collecting and processing
users’ personal information. Companies that want to operate in the
EU must carefully adhere to GDPR rules or they may face severe
consequences. Many well-known organizations have already been forced
to pay large fines for non-compliant data practices. Bottom line: if you
want European customers, you must comply with GDPR. Sovereign DBaaS
makes this much easier.

• Schrems II — This court ruling invalidated the EU-US Privacy
Shield, delegitimizing the process of transferring personal data from
servers in Europe to the U.S. and other countries worldwide. However,
had the shield remained in place, it wouldn’t have guaranteed that
European citizens’ data would remain private. Whether the data
is stored in Europe or the U.S., American companies must comply
with intelligence agency requests. So, American companies can’t
guarantee data privacy to European citizens.

 ✓ CCPA — The California Consumer Privacy Act is a California state law
requiring businesses to follow specific guidelines in collecting, handling,
and selling Californians’ personal information. The law establishes six
central data rights for consumers, including the right to delete data
collected about the consumer and the right for data disclosure (e.g.,
when and why data was collected, and if the data was sold to a third
party). CCPA is opt-out; consumers can opt out of businesses collecting,
processing, or selling their personal information.

• CPRA — California Privacy Rights Act (CPRA) is an amendment to
the CCPA adding two rights to be enforced starting in July 2023.

https://severalnines.com/blog/how-achieve-gdpr-compliance-documenting-our-experience-part-2/
https://www.gdprsummary.com/schrems-ii/
https://en.wikipedia.org/wiki/EU%E2%80%93US_Privacy_Shield
https://en.wikipedia.org/wiki/EU%E2%80%93US_Privacy_Shield
https://world.hey.com/dhh/american-data-spies-will-never-care-where-the-servers-are-371d4016
https://world.hey.com/dhh/american-data-spies-will-never-care-where-the-servers-are-371d4016
https://pro.bloomberglaw.com/brief/the-far-reaching-implications-of-the-california-consumer-privacy-act-ccpa/

19

These two rights are the ability to correct inaccurate information and
limit the use and disclosure of sensitive personal information.

Regarding data regulations, you need to know which laws include data
residency rules, including localization. Data residency is the place or location
where the data is stored and data localization requirements specify the
storage of data in the region from which it came. For example, if you collect
data from Canada and then process and store that data in Canada, you are
practicing data localization. Organizations increasingly face tremendous
challenges regarding data regulations, and many must navigate multiple
complex compliance requirements.

Data sovereignty via a Sovereign DBaaS can help you more easily comply
with privacy regulations because you are able to determine the level of
control you want over every step of the data collection, handling, and storage
process. With traditional DBaaS vendors, you don’t. By embracing the pillars
of sovereign data and implementing a Sovereign DBaaS, you will be well
situated in remaining compliant with current laws and able to quickly adapt
as needed.

The Principles of Sovereign DBaaS

A Sovereign DBaaS implementation requires three key principles:

1) End-user independence
2) Environment agnosticism
3) Open-source / source-available software (OSS)

First principle: End-user independence

End-user Independence arises from two conditions: visibility and control of
the database layer.

20

The first factor required for end-user independence is full visibility and
transparency into the database layer. This includes end-to-end visibility
into the technologies and software the DBaaS uses. Sovereign DBaaS can
offer complete data transparency with no intermediaries (e.g., vendors)
withholding information about the components and processes being used to
implement the stack. Traditional DBaaS is a veritable black box — you can’t
see into it, i.e. the data management software, security configurations, or
privacy protocols, etc., just the output.

Arising out of visibility is the second condition, control, which is a function of
the following:

 ✓ DB and infrastructure access — You can modify the database/infra
configuration and everything that the configuration entails. This is made
possible by the direct use of open-source software, unmediated by a
vendor’s implementation, enabling you to better tune your databases to
support your workloads.

 ✓ Location choice — You decide where and how data is processed and
stored. For instance, you can place workloads with stringent requirements
in one environment, such as on-premises, and those with fewer in another,
such as public cloud. These requirements don’t just have to revolve around
compliance and security, but performance, cost, and other variables that
influence your workloads as well.

Second principle: Environment/ecosystem agnosticism

Sovereign DBaaS enforces the idea of environment agnosticism and extends
it to the ecosystem. It means that end users have the freedom to choose
different infrastructure environments and the ability to combine multiple
underlying environments into a unified control plane. They get environment

21

agnosticism – which enables location control. You can choose one
environment or select from a mix of environments such as private cloud (e.g.,
VMware, Nutanix, OpenStack), public cloud (e.g. AWS, GCP, Azure, etc.),
on-premises, co-location, and hybrid.

Sovereign DBaaS means having the freedom to go beyond any one
ecosystem. For example, AWS Outposts lets you run on-premises. However,
this setup is not truly Sovereign because, aside from the managed service
aspect, you’re locked into the AWS ecosystem.

Third principle: Embracing Open-Source Software (OSS)

A crucial principle of Sovereign DBaaS is the unrestricted use of open-source
software. OSS allows you to avoid many of the issues you see with
proprietary cloud vendor solutions, such as vendor lock-in. You have the
ability to freely utilize the best OSS databases available, without worrying
about managed providers’ APIs, nomenclature and semantics, e.g. interacting
with managed PostgreSQL from one provider is a different experience than
another, or license changes that render a database unavailable for third-party
offering, such as Elasticsearch.

Open-source software also potentially unlocks cost efficiency because, a) it’s
free, b) it decouples your databases from the infrastructure, enabling you to
place them where you want, and c) you have full access to be able to tune
and optimize their configuration. You are buying a packaged solution from
vendors that is more open-source adjacent, it’s tied to the infrastructure
which they determine, often only available in one environment (typically a
handful of clouds), and you aren’t given full access to the database because
of their SLA requirement.

The above principles support greater sovereignty over your database layer.

22

But what does their expression look like? The following four markers will
help you determine your sovereignty.

The markers of a Sovereign DBaaS

When we talk about the markers of sovereign data, we are referring to these
five main concepts:

 ✓ Control — You are able to own and assert control over the data pipeline
according to your needs through your Sovereign DBaaS implementation —
from the underlying infrastructure, databases and their operations, to the
location of your workloads.

 ✓ Access — You have the level of access your use case requires to your data
and the technologies that handle that data. You can access the data plane,
the underlying infrastructure, and the data management system. You get
root access, allowing you to install, configure, and manage your stack
components regardless of the infrastructure.

 ✓ Portability — You can take your data from one vendor and port it to
another with minimal difficulty and without substantial overhead costs.
The third-party approach to database management inevitably leads to
organizations becoming wholly dependent on a data service, effectively
trapping them in that particular ecosystem.

Conversely, being data sovereign ensures you don’t get locked in with a
specific vendor or environment. You can efficiently and cost-effectively
move databases from one cloud service to another, or from an on-premise
environment to a cloud environment and vice versa.

 ✓ Licensing stability — A fundamental principle of sovereign data is the
ability to roll your own optimized DBaaS solutions without being subject

23

to vendors’ licensing restrictions. You can include source-available options
in your sovereign DBaaS solution like MongoDB and Elasticsearch that
third-party service providers are unable to.

 ✓ Budget control - Using a provider for your database allows you to get
started quickly and easily, with the ability to scale up and down as needed.
However, this scaling comes at a cost. If not monitored, and managed, then
this can create bills that are an order of magnitude higher than expected.
Enforcing limits, both at the billing and deployment level, is crucial to limit
these surprises. Within a hybrid/multi-cloud, the complexity increases
exponentially.

With Sovereign DBaaS, you can more easily form a clear understanding
of costs because you have greater visibility into and control over inputs,
e.g. infrastructure, databases, tools, etc. You can better track and manage
them because you can consolidate your database layer into a true single
pane of glass.

Now that we understand the principles and markers of a Sovereign DBaaS
implementation, it’s important to understand its true purpose, i.e. business

risk mitigation, which we cover now.

24

Sovereign DBaaS mitigates top business risks

The pillars of Sovereign DBaaS enable you to mitigate and neutralize many
business risks:

Vendor lock-in
Sovereign DBaaS mitigates vendor lock-in due to
incompatibilities and prohibitive costs of switching databases or
services.

Environment/ecosystem lock-in
Sovereign DBaaS decouples the database from the
infrastructure, allowing you to place your databases where and
in what configuration you want, e.g. on-prem, cloud, hybrid, and
manage them from an environment-spanning single pane of
glass.

Key person dependency
Sovereign DBaaS mitigates reliance on one or a few individuals
who understand the system and whose absence may cause
catastrophic failure. Redundancy, whether via personnel
or systems, is built into the database layer so that you can
continue to operate as needed.

Managed database license instability
Sovereign DBaaS mitigates issues related to database licenses
becoming unavailable or changing terms, forcing a change in
your usage. Sovereign DBaaS means you are free from vendor
license instability.

Regulatory changes
Sovereign DBaaS mitigates challenges with data privacy
regulations by providing the ability to choose where workloads
are placed, manage access to them, and create a record of all
changes made. This allows organizations to stay compliant with
ever-changing regulatory landscapes.

25

III. How to become data sovereign

In the previous sections of this guide, we introduced the concept of Sovereign
DBaaS and its pillars and principles. In this third and final section, we will
get into practical applications and elaborate on how you can implement a
Sovereign DBaaS of your own.

We’ll start with examples of two industries that see substantial benefits from
a Sovereign DBaaS implementation and the needs that a sovereign approach
solves. Then we’ll describe exactly how you too can become data sovereign.
Let’s dive in!

Part 1: Sovereign DBaaS application examples

The needs solved by a Sovereign DBaaS implementation
Applications that have strict data requirements benefit the most from
Sovereign DBaaS. These requirements typically center around regulatory
compliance, high performance, and/or high availability.

Regulatory compliance
Organizations that are subject to strict regulatory requirements need to
ensure that they are in compliance with data protection laws and regulations.
Failing to comply with these regulations can result in hefty fines, loss of
reputation, and even legal action. Sovereign DBaaS offers a way to process
and store data in environments and locations that align with regulatory
requirements and data protection laws.

High performance
Applications with high expectations for speed and reliability suffer if their
data services are too slow or unreliable. Sovereign DBaaS offers fast,

26

reliable, and scalable database services that can fine-tune the performance
and availability of customer-facing applications. This, in turn, can help
organizations to retain customers and gain a competitive advantage.

High availability
High availability is especially for mission-critical applications such as those
used in the finance and healthcare sectors. These applications need to
be available 24/7 and any downtime can result in significant financial and
reputational damage. Sovereign DBaaS enables organizations to deploy
database instances in multiple regions, providing high availability and low
latency for customers in different locations. Additionally, automatic failover
and load balancing features help to ensure that the application remains
available even in the event of a failure.

How Sovereign DBaaS enables regulatory
compliance for consumer banks

Consumer banks are responsible for handling Personal Identifiable
Information (PII) of customers, sensitive data related to payment processing,
accounting ledgers, and customer product portfolios such as loans and
insurance. As a result, they are subject to very strict regulatory requirements
from government authorities in terms of the ways they handle this sensitive
customer data and financial information. Sovereign DBaaS is an ideal solution
for consumer banks as it provides a range of benefits that can help them
meet their regulatory requirements and protect their sensitive data.

 ✓ Key Features of Sovereign DBaaS for consumer banks:
• Data Sovereignty: Allows the bank to process and store data in
environments and locations that align with regulatory requirements
and data protection laws.
• Compliance: Helps the bank to meet regulatory requirements

27

by providing a way to manage and track access to data, as well as
keeping an auditable log of all changes.
• Security: Enhances the security of sensitive customer data and
financial information by providing encryption and secure access
controls.
• Performance: Improves the performance and availability of the
bank’s customer-facing applications by providing a fast, reliable, and
scalable DBaaS.
• Flexibility: Allows the bank to choose the right type of server and
storage, and configure the DBaaS based on its specific needs.
• Cost-efficiency: Reduces the cost of maintaining and scaling a
DBaaS by providing a self-managed option that can be automated
and optimized.
• Disaster recovery / Cloud Exit Planning: Gives the bank peace of
mind and full control over how they mitigate the impact of unforeseen
events.

The first and foremost benefit of Sovereign DBaaS is data sovereignty.
This allows a consumer bank to process and store data in environments and
locations that align with their regulatory requirements and data protection
laws. By doing so, the bank can ensure that its data is protected and that it is
complying with all relevant regulations.

Another benefit of Sovereign DBaaS is compliance. The solution helps the
bank to meet regulatory requirements by providing a way to manage and
track access to data, as well as keeping an auditable log of all changes. This
ensures that the bank can demonstrate compliance with regulations and that
it is taking all necessary steps to protect its data.

Security is also a key benefit of Sovereign DBaaS. The solution enhances
the security of sensitive customer data and financial information by providing

28

encryption and secure access controls. This ensures that only authorized
personnel can access the data and that it is protected from unauthorized
access and cyber threats.

In addition to these benefits, Sovereign DBaaS also offers improved
performance and availability for the bank’s customer-facing applications.
The solution provides a fast, reliable, and scalable DBaaS that can help
improve the user experience for customers. It also offers flexibility, allowing
the bank to choose the right type of server and storage, and configure the
DBaaS based on its specific needs. This can help the bank to optimize its
operations and reduce costs.

Cost-efficiency is one of the key benefits of Sovereign DBaaS because
it allows for self-managed options. By providing the ability to automate
and optimize the management of the database, a self-managed option can
significantly reduce the cost of maintaining and scaling a DBaaS. This makes
it an attractive option for a consumer bank business that is looking to save
money while still maintaining a high level of performance and reliability.

Disaster recovery features of a DBaaS are important for consumer banks to
safeguard sensitive financial data, ensure regulatory compliance, maintain
business continuity, and uphold customer trust. Critically, a Sovereign DBaaS
lets the bank retain control and autonomy over their infrastructure. Having
complete control of their data enables banks to gain a competitive advantage,
improve operational efficiency, and maintain peace of mind; while being able
to run Disaster Recovery scenarios without requesting it from a third party.
Financial services regulators also provide specific guidelines on cloud exit
planning. The European Banking Authority, for example, requires an exit
strategy for outsourced critical or important functions in its guidelines on
outsourcing arrangements, including the use of the public cloud.

29

Finally, as with all use cases, Sovereign DBaaS provides monitoring,
failover, and load balancing capabilities that can help ensure availability and
reliability.

How Sovereign DBaaS enables high availability and
high performance for telecoms

Telecommunications companies provide essential connectivity services to
their customers, making high availability and high performance crucial for
their operations.

 ✓ Key features of Sovereign DBaaS for telecoms:
• Multi-Region Deployment: Allows the telecommunications
company to deploy database instances in multiple regions, providing
high availability and low latency for customers in different locations.
• Scalability: Enables the DBaaS to scale vertically and / or
horizontally as needed to handle changes in traffic and data volume.
• Automatic failover: Allows the DBaaS to automatically route
traffic to a healthy instance in the event of a failure, ensuring high
availability.
• Load balancing: Enables the distribution of traffic across multiple
instances of the DBaaS, reducing the risk of a single point of failure
and improving performance.
• Performance optimization: Provides tools and techniques to
optimize the performance of the services managed by the platform,
such as caching, memory management, and replication.
• Monitoring and management: Provides monitoring and
management tools that allow the telecommunications company to
track the health and performance of the DBaaS and take action as
needed.

30

• Security and compliance guarantees: In addition to high
availability and performance, a Sovereign DBaaS enables the telecom
to implement granular security policies and ensure compliance with
data regulations surrounding user data.

The multi-region deployment capability of a Sovereign DBaaS
implementation allows telecommunications companies to deploy database
instances in each of the regions they operate within, providing high
availability and low latency for customers across all their locations. With
multiple instances of the database distributed geographically, the risk of a
single point of failure is reduced and customers can access their data more
quickly and reliably.

Scalability is another important feature of Sovereign DBaaS for telecoms.
It enables their DBaaS to scale vertically and/or horizontally as needed
to handle changes in traffic and data volume. This means that the
telecommunications company can easily adjust the resources allocated to the
database to meet the changing needs of their customers.

Automatic failover is a critical feature of Sovereign DBaaS that ensures high
availability. In the event of a failure, the DBaaS can automatically route traffic
to a healthy instance, minimizing downtime and ensuring that applications
can access and act on data without interruption.

Load balancing is another feature that improves performance and reduces
the risk of a single point of failure. By distributing traffic across multiple
instances of the DBaaS, the load on each instance is reduced, and customers
can access their data quickly and reliably.

Sovereign DBaaS also offers performance optimization tools and
techniques such as caching, memory management, and replication. These

31

tools help to ensure that the services managed by the platform are running
efficiently and effectively.

Monitoring and management tools are also provided by Sovereign DBaaS.
These tools allow the telecommunications company to track the health and
performance of the DBaaS and take action as needed to ensure that it is
running smoothly.

In addition to high availability and performance, Sovereign DBaaS also
offers granular security policies and compliance with data regulations
surrounding user data. This ensures that the telecommunications company
can maintain the security and privacy of their customers’ data, which is
essential in the telecommunications industry.

Overall, a Sovereign DBaaS implementation is an excellent choice for
telecommunications companies that need to maintain high availability and
performance for their customers while also ensuring the security and privacy
of their data. With features such as multi-region deployment, scalability,
automatic failover, load balancing, performance optimization, and monitoring
and management tools, Sovereign DBaaS is a comprehensive solution
that can meet the needs of even the most demanding telecommunications
companies.

Part 2: How to become data sovereign

Roll your own DBaaS
The rest of this guide will show you how to create your own custom DBaaS.
You will learn how to choose the right database engine, set up a cloud
infrastructure, deploy and manage your database instances and monitor
their performance. By creating your own custom DBaaS, you will have more
control and flexibility over your data and applications.

32

We’ll cover the two most common use cases: one where you’re building a
DBaaS for your own team or project, and another where you’re building a
DBaaS for an entire organization.

Use Case: Providing DBaaS for your team or project

Implementing your own DBaaS for projects saves time and money, improves
performance and reliability, enhances security, and increases flexibility. At
this scope, rolling your own DBaaS is very similar to buying into a traditional
DBaaS offering from a vendor.

Building a DBaaS for your team can help them succeed in building
applications by providing several benefits:

 ✓ Enhanced productivity: A custom DBaaS is designed to meet the specific
requirements and workflows of your engineering team, enabling them to
work more efficiently and focus on application development rather than
database management tasks.

 ✓ Simplified infrastructure management: A well-designed DBaaS
abstracts the underlying complexities of database infrastructure, allowing
your engineering team to focus on building applications without worrying
about infrastructure setup, maintenance, and scaling.

 ✓ Consistency and standardization: A custom DBaaS enforces consistent
database management practices, configurations, and security policies
across all applications, reducing the risk of errors and misconfigurations,
and ensuring a stable development environment.

 ✓ Faster development cycles: A DBaaS provides engineers with easy
access to database resources and automates provisioning, scaling, and

33

backup processes, reducing the time spent on these tasks and allowing
for faster development cycles and quicker releases.

 ✓ Improved collaboration: A DBaaS can serve as a central platform for
your engineering team, facilitating collaboration, knowledge sharing, and
streamlined communication, ultimately leading to better applications and
faster problem-solving.

 ✓ Scalability and performance optimization: A custom DBaaS can be
designed to scale efficiently based on the demands of your applications,
ensuring optimal performance and resource utilization, and enabling your
team to build applications that can grow with your business.

 ✓ Increased application reliability: By using a DBaaS with built-in high
availability, backup, and disaster recovery features, your engineering team
can build applications that are more resilient and less prone to downtime,
ensuring a better user experience for your customers.

Home-built solutions can be developed to provide cloud management
functionality using tools and APIs which enable developers to create
interfaces that interact with the DBaaS. These solutions can be tailored
to the specific needs of the company, allowing for a more customized
experience.

Setting up a DBaaS for your team involves several steps, which can be
broken down into the following phases:

1. Planning and design: Identify your requirements within the larger
context of your project or organization, evaluate the DBaaS options
available to you, select database technologies that best apply to what
you’re working on, and define the architecture.

34

2. Implementation and deployment: Set up infrastructure, install database
software, configure the system, and integrate with existing tools.

3. Testing and optimization: Test the system, optimize performance, and
establish monitoring and alerting.

4. Management and maintenance: Create documentation, train your team,
implement backup and disaster recovery plans, and perform regular
maintenance.

By following these steps, you can set up a DBaaS that meets the
specific needs of your team, provides a stable and efficient development
environment, and enables your engineers to focus on building applications
rather than managing database infrastructure. We’ll go into more detail about
each step of building a DBaaS later in this guide.

Use Case: Providing DBaaS internally across your entire organization

When the scope of the DBaaS extends to an entire organization there are
additional components required for an optimal user experience. These
components include workflow orchestration tools and cloud management
tools.

Workflow orchestration tools are essential if you want to provide internal
customers a centralized platform for managing complex workflows and
automating tasks. Since a DBaaS involves several components, including
compute, storage, and networking, these all need to be coordinated and
managed effectively together. Workflow orchestration tools provide a
framework for managing these components and streamlining the deployment
and management of the DBaaS.

35

Cloud management tools enable users across the organization to interface
with the DBaaS. This is where solutions like ServiceNow or home-built GUI
solutions come in. The cloud management module in ServiceNow provides
a graphical user interface (GUI) that enables internal customers to interface
with the DBaaS. Through this GUI, users can deploy and manage instances,
as well as manage access and security. The GUI is intuitive, allowing internal
customers to quickly and easily interact with the DBaaS without requiring
specialized technical knowledge.

Large organizations are increasingly leveraging Internal Developer
Platforms (IDPs) to offer DBaaS for internal users, streamlining and
automating various processes for both platform teams and application
developers. For example, Backstage is a popular open-source platform
originally created by Spotify which aims to unify infrastructure tooling,
services, and documentation to create a streamlined development
environment from end to end.

Platform teams focus on building and maintaining the IDP by incorporating
standardization, infrastructure management, service level agreements,
and workflow optimization. They configure the IDP to automate repetitive
tasks, such as spinning up resources or environments, and establish baseline
templates for application configurations and permissions governance.

Application developers gain autonomy in modifying configurations, deploying
applications, and managing environments. By integrating with existing
workflows, IDPs empower developers to request resources, spin up fully
provisioned environments, rollback changes, and deploy applications with
ease. This cohesive approach ensures a seamless and efficient DBaaS
experience for the entire organization.

https://internaldeveloperplatform.org/what-is-an-internal-developer-platform/
https://internaldeveloperplatform.org/what-is-an-internal-developer-platform/

36

Your Use Case

Now that you’ve got a sense for the scope of Sovereign DBaaS use cases,
you’re probably considering where yours fits in and how to get started
building. The remainder of this guide will step through each part of the
process for creating your own DBaaS:

1. Choose Your Infrastructure
2. Select and Configure Your Databases
3. Decide Where and How to Deploy
4. Set up Security, Access Controls, and Compliance Rules
5. Monitor and Manage Performance
6. Plan for Disaster and Recovery

Choose Your Infrastructure

DBaaS infrastructure covers three domains: compute, storage, and
networking.

Compute: Choosing the right type of server and instance size

Creating your own custom DBaaS means choosing the right type of
server and instance size for your database instances. There are three main
options to consider: virtual machines, bare metal servers, and containerized
environments.

Virtual machines
Virtual machines (VMs) are software-based emulations of physical servers
that run on a hypervisor. VMs offer a high level of abstraction and isolation
from the underlying hardware and other VMs. They also allow you to easily

37

provision, resize and migrate your database instances across different regions
and zones. However, VMs also introduce some overhead and performance
degradation due to the hypervisor layer.

Bare metal servers
Bare metal servers are physical servers that run without any hypervisor or
virtualization layer. They offer a low level of abstraction and isolation from
the underlying hardware and other servers. They also provide you with
full access and control over your database instances and their resources.
However, bare metal servers also require more upfront investment and
maintenance costs. They also limit your ability to scale up or down your
database instances on demand.

Containerized environments
Containerized environments are software-based packages that bundle
together your database instances and their dependencies into isolated units
that run on a container engine. Containers offer a medium level of abstraction
and isolation from the underlying hardware and other containers. They also
enable you to deploy, update and scale your database instances faster and
easier than VMs or bare metal servers. However, containers also require
some additional tools and skills to manage them effectively.

The best option for your custom DBaaS depends on several criteria, such as:

 ✓ Existing architecture and constraints: Products, tech stacks, and other
resources that your organization has already committed to using. For example
if your org already uses OpenStack, or has leased data centers, these prior
commitments should factor into each subsequent criterion for your DBaaS

 ✓ Hardware needs: The type and amount of CPU cores, memory, disk
space, network bandwidth and other resources that your database instances
require.

38

 ✓ Workloads: The nature and characteristics of your database operations,
such as I/O intensive (e.g., OLTP), RAM intensive (e.g., in-memory databases),
GPU intensive (e.g., training models) or mixed workloads.

 ✓ Scale of traffic: The volume and variability of requests that your
database instances need to handle at peak times or during spikes.

 ✓ Budget: The amount of money that you are willing to spend on your
compute infrastructure in terms of upfront costs (e.g., capital expenditure) or
ongoing costs (e.g., operational expenditure).

Based on these criteria, you can compare the pros and cons of each option
and choose the one that best suits your needs.

Storage: Selecting the appropriate storage solution

Selecting the right storage solutions is crucial for any bespoke DBaaS. Which
types you’ll want to use depends on your use case. When choosing a storage
solution for your custom DBaaS, consider the following criteria:

 ✓ The type of data being stored (structured or unstructured)
 ✓ The scale of the data
 ✓ Durability and availability requirements
 ✓ Access patterns (sequential or random)
 ✓ Your budget

Evaluate these criteria against the available storage solutions below and
select the storage solution that best meets your needs and provides the
necessary level of performance, scalability, and cost-effectiveness. Storage
solutions include block storage, object storage, and file storage.

Block storage
Block storage solutions such as local NVMe disks, SAN (Storage Area
Network), and NAS (Network Attached Storage) offer high performance

39

and low latency. This makes them ideal for use cases that require fast and
reliable access to data. They are best suited for storing structured data that
is accessed randomly. Block storage is typically more expensive than other
storage solutions, but it offers better performance and reliability.

Object storage
Object storage solutions such as Amazon S3, Azure Blob, and Google Cloud
Storage are designed to store large amounts of unstructured data. They
offer high durability, scalability, and availability at a lower cost compared to
block storage. Object storage is best suited for storing large files, backups,
and archival data. Access patterns are usually sequential, as object storage is
optimized for reading and writing large files.

File storage
File storage solutions such as NFS (Network File System) and SMB (Server
Message Block) are commonly used for storing files that need to be shared
across multiple systems. They are best suited for storing unstructured
data that is accessed randomly. File storage is usually slower than block
storage, but it offers better compatibility with various operating systems and
applications.

 Networking: Setting up network topology and security

In the context of creating a DBaaS, networking infrastructure offers
on-demand access to network capabilities and resources. It dictates how
services communicate with each other across any combination of public and
private clouds. When building your DBaaS networking infrastructure, you’ll
want to consider network topology, security, load balancing, accessibility,
performance, and compliance.

Network topology
The network topology defines the structure of the network and how devices

40

are connected. There are several options to choose from, including single
VPC (Virtual Private Cloud), multiple VPCs, and VPC peering. A single VPC
is the simplest option, but it may not be scalable enough to meet the needs
of a growing DBaaS. Multiple VPCs and VPC peering allow for more complex
and scalable network topologies, but they require more configuration and
management.

Network security
Implementing strong security measures is essential to protect your DBaaS
from unauthorized access and attacks. Some security measures to consider
include firewalls, VPNs (Virtual Private Networks), and security groups.
Firewalls can be used to control incoming and outgoing traffic to your DBaaS.
VPNs can provide a secure connection between your DBaaS and remote
clients. Security groups can be used to define access rules for specific IP
addresses and ports.

Load balancing
Setting up load balancers can distribute traffic across multiple instances of
your DBaaS, ensuring high availability and performance. Load balancers can
be configured to automatically route traffic to the least busy instance or the
one that is geographically closest to the client.

DNS
Configuring DNS (Domain Name System) records is essential to ensure that
your DBaaS is easily accessible to your clients. DNS allows clients to access
your DBaaS using a domain name instead of an IP address. Configuring DNS
records can also provide failover and load balancing capabilities.

Performance and compliance
In addition to the key areas discussed above, consider how your networking
architecture may affect performance. Network latency and bandwidth will
affect the performance of your DBaaS, so it’s important to choose a network

41

solution that provides adequate speed and reliability. Additionally, it’s
essential to ensure that the chosen network configuration complies with any
regulatory requirements for data storage and management.

By evaluating each of the aspects of networking and choosing an appropriate
networking solution, you can ensure that your custom DBaaS is secure,
highly available, and easily accessible to your clients, while also meeting
performance and compliance requirements.

Select and configure your databases

After you’ve established your DBaaS infrastructure you can move on to the
stage of selecting and configuring your choice of databases.

Database Selection

There are myriad database technologies available covering the full spectrum
of data types and uses. Consider the following factors to determine which
databases may be good choices for your DBaaS.

Data model
Decide whether to use a relational or non-relational data model.
Relational databases store data in tables with a predefined schema, while
non-relational databases use flexible schemas to store data in various
formats. Thus, relational databases are well suited for structured data, while
non-relational databases are better for unstructured data.

Query language
Once you have determined the type of database you want to use, you’ll
need to evaluate the query languages available for the database. SQL is the
standard query language used by relational databases, while non-relational
databases often use a variety of query languages. It’s important to evaluate

42

the query language options for each database and determine which one will
work best for your organization.

Scale
The ability of the database to handle the scale of data and traffic may be an
important consideration for your use case. Relational databases are known
for their scalability with structured data, and non-relational databases are
designed to scale up with large volumes of unstructured data. Nowadays,
there are database options in both classes that can handle vertical and
horizontal scaling. It’s important to determine the expected volume of data
and traffic and choose a database that can handle it.

Topology
Topology refers to the structure or layout of a database system, which can
significantly impact performance, scalability, and availability. Let’s outline
some of the more common options below:

 ✓ Single node: This is a single instance running your database. This is
often used for development environments but (almost) never suitable for
production environments.

 ✓ Active-Passive: In Active-Passive topologies, there is one primary node
for read and write operations, and secondary nodes that replicate data
from the primary. Active-Passive provides improved availability and data
redundancy, but limited write scalability.

 ✓ Active-Active: In Active-Active topologies, multiple nodes can handle
read and write operations, improving performance and fault tolerance, but
increasing data consistency and management complexity.

 ✓ Sharding: Dividing a large database into smaller, more manageable parts
called shards, which are distributed across multiple nodes.

The licensing implications of the chosen topology and any required
third-party solutions or libraries may also impact other choices for the

43

DBaaS. For example, some vendors may require specific licensing for
clustered or HA database configurations, and some database solutions may
require third-party libraries or solutions to implement specific topologies.

Concurrency
Concurrency refers to the ability of the database to handle multiple
concurrent requests. Relational databases typically handle concurrency
well, while non-relational databases may struggle with it. It’s important
to evaluate the concurrency requirements of the business and choose a
database that can handle the expected load.

Durability
Durability refers to the ability of the database to recover data in the event
of a failure or outage. Relational databases typically have strong durability
guarantees and are designed to handle failures, while non-relational
databases may have weaker durability guarantees.

Cost
Cost is always a factor to consider. Some databases may be expensive to
license, while others may require significant maintenance resources. It’s
important to evaluate the total cost of ownership for each database and
determine which one provides the best value for the business. Evaluate the
cost of using and maintaining the database, including licensing fees, hosting
costs, and ongoing maintenance costs.

Your existing stack
Consider whether you have existing tools and applications that use specific
technologies, such as web applications that use MySQL while your mobile
apps use CouchDB. Will these be replaced or are you looking for a more
reliable way to run the same stack? If you have existing applications that
rely on a particular database technology, it may be necessary to choose a
database that can integrate with these tools.

44

Database configuration

Once you have selected the appropriate database for your custom DBaaS, the
next step is to configure it to meet your needs. This process involves several
key areas that are essential to ensuring the database is secure, performs well,
and can recover from any potential failures.

Instance configuration
Instance config involves configuring the instance size and type, storage, and
security settings. It is essential to properly size the instance to ensure it can
handle the expected workload while staying within budget. The storage and
security settings should also be carefully configured to protect the data and
ensure it is only accessible to authorized users.

Database initialization
The next area to consider is database initialization. This involves importing
data, creating tables, and defining indexes. Importing data can be a complex
process, so it is important to plan and test this carefully to avoid any potential
data loss or corruption. Creating tables and defining indexes should be done
with care to ensure optimal performance.

Performance tuning
Configure settings such as caching, memory management, and replication, so
you can optimize performance and ensure that the database can handle the
expected workload. This process can be time-consuming, but it is essential to
ensure the database performs well and meets your needs.

Monitoring and management
Monitoring and management are critical to maintaining the health and
performance of the database. Set up monitoring and management tools to
track performance metrics, alert you to potential issues, and provide visibility

45

into the database’s health. This allows you to proactively address any
potential issues before they impact users.

Backup and recovery
Backup and recovery procedures ensure that data is protected and can be
easily restored in the event of a failure. This can be a complex process, and
goes beyond a backup script scheduled with cron. A backup and recovery
solution would need to be able to do point in time restore, automatic
verification of the backup files, retention, compression, encryption and upload
to external storage. So it is important to plan and test this carefully to avoid
any potential data loss or corruption.

Additional considerations
 ✓ High availability is important for ensuring the database is always available.
This can be achieved by configuring the database for high availability, such
as using replication or clustering.

 ✓ Security is essential, so it is important to ensure the database is properly
configured for security, such as encrypting data at rest and in transit.

 ✓ Compliance should be considered to ensure that the chosen configuration
complies with any regulatory requirements for data storage and
management.

Configuring a database for a custom DBaaS involves several critical areas
that must be carefully planned and executed to ensure optimal performance,
security, and availability. By carefully considering each of these areas, you
can create a database that meets your specific needs and provides reliable,
high-performance data storage and management.

46

Decide where and how to deploy

Now that you’ve established your infrastructure and selected and configured
your databases, you can decide where and how to deploy.

Availability zones

Availability zones are discrete locations within a cloud region that are
designed to be isolated from failures in other availability zones. Using
availability zones can provide increased availability and redundancy for your
database.

Geographic diversity
It is essential to ensure that the availability zones are located in different
geographic locations to reduce the risk of a single event affecting all zones.
Further, the geographic diversity of your availability zones should correspond
to where your users are located.

Redundancy
Implementing redundancy within the availability zones is important to
ensure that there are multiple copies of data and resources available. This
redundancy ensures that in case of any failures, the system continues to run
without interruption, and the data remains intact.

Automatic failover
Automatic failover is another essential factor in availability zone
configuration. Configuring automatic failover ensures that traffic is
automatically routed to a healthy availability zone in case of a failure. This
setup ensures that your database is available and accessible to your users
without any disruption.

47

Testing
Test your availability zones regularly to ensure that they are properly
configured and can handle failover scenarios. Regular testing helps identify
and fix any issues before they cause downtime or affect user experience.

Cost
The cost of setting up and maintaining availability zones can be high. Weigh
the benefits of using more availability zones against the added cost.

Compliance
Compliance is another important factor to consider when configuring
availability zones. Ensure that the chosen availability zone configuration
complies with the local regulatory requirements for data storage and
management.

In summary, deploying your database in multiple availability zones provides
increased availability, redundancy, and automatic failover, ensuring that your
database is always available and accessible to your users. Be sure to consider
cost, compliance, and how you’ll conduct regular testing.

Deployment models

Choosing the appropriate deployment model is crucial when building your
own DBaaS. There are two primary deployment models: single-region and
multi-region.

Single-region deployment model
In a single-region deployment model, a single instance of the DBaaS is
deployed in one region. This model is best suited for small or medium-sized
applications with low traffic. It is relatively simple to deploy and manage, and
the cost is lower. However, this model offers less availability and disaster
recovery options compared to a multi-region model. A single region may

48

have more than one availability zone, which makes it more robust. If the
application is small and has low traffic, a single-region deployment model is
sufficient.

Multi-region deployment model
In a multi-region deployment model, a DBaaS instance is deployed in
multiple regions, providing higher availability and better performance for
users in different locations. This model is also used for compliance reasons
when data must be stored in a particular region. Multi-region deployment
is complex to deploy and manage, and the cost is higher compared to
a single-region model. However, it offers high availability and better
performance for users in different locations.

Additional considerations

 ✓ Latency can impact application performance, so deploying multiple
availability zones in each region is recommended. If latency is a priority, it
is essential to incorporate it into cost calculations and thoroughly map the
network architecture. By examining overlapping networks and potential
cross-network interactions, you can optimize the architecture to minimize
latency, either by adding caching mechanisms or strategically colocating
infrastructure to reduce secondary costs.

 ✓ Ensuring data consistency between instances in different regions can be a
challenge and needs to be considered in a multi-region deployment model.

 ✓ The cost of deploying and maintaining instances in multiple regions can be
high. Ingress and egress costs should be considered in public cloud and
leased / colocation environments, and the networking setup can greatly
impact the monthly cost.

49

 ✓ Regulatory requirements for data storage and management must be
complied with for each region in which you operate.

Selecting the appropriate deployment model for your DBaaS makes a big
difference in how your DBaaS meets various requirements. A single-region
deployment model is suitable for small or medium-sized applications
with low traffic, while a multi-region deployment model is better for
applications that require higher availability and better performance for users
in different locations. There are pros and cons to each model, and additional
considerations such as latency, data consistency, cost, and compliance must
be taken into account when making a decision.

Set up Security, Access Controls, and Compliance
Rules

Security is a top priority when setting up a DBaaS, and it is essential to
ensure that it is secure and compliant with regulations. This section will
discuss the various security measures that should be taken to protect the
DBaaS, including authentication and authorization, encryption, network
security, vulnerability management, incident response, compliance,
third-party access, auditing, and risk assessment.

Authentication and authorization
Authentication and Authorization are the primary security measures used to
ensure that only authorized users can access the DBaaS. Authentication is
the process of verifying the identity of a user or system, while Authorization
is the process of granting access to a user or system based on their identity.
Tools like LDAP, Active Directory, and OAuth are used for this purpose. These
tools provide a centralized database of user credentials that can be used to
authenticate users and determine their level of access to the DBaaS.

50

Encryption
Encryption should be used to protect data in transit and at rest. LUKS,
dm-crypt, and BitLocker are some of the encryption tools that can be used
for this purpose. Encryption protects against data breaches by ensuring that
data cannot be accessed by unauthorized users even if it is intercepted.

Network security
Network security measures such as firewalls, VPNs, and security groups
should be implemented to secure any DBaaS. Firewalls like iptables and
UFW can be used to block unauthorized access to the DBaaS, while VPNs
like OpenVPN and IPSec can be used to encrypt and secure network traffic.
Security groups can be used to control inbound and outbound traffic to and
from the DBaaS.

Vulnerability management
Vulnerability management is essential to ensure that the DBaaS remains
secure over time. Regular monitoring and patching of vulnerabilities in the
DBaaS should be done using tools such as Nessus, OpenVAS, and Nessus
Agent.

Incident response
Incident response plans should be put in place to respond quickly and
effectively to any security incidents that may occur. Tools such as SOC Prime,
ThreatConnect, and IBM Resilient can be used for this purpose.

Compliance
As with every part of a DBaaS, compliance is a critical aspect of DBaaS
security. It is essential to ensure that the DBaaS complies with relevant
regulations such as HIPAA, PCI-DSS, GDPR, and any other applicable
regulatory schemes in the areas you operate. Compliance can be achieved
through the use of various security measures such as encryption, access
controls, and auditing.

51

Additional considerations
 ✓ Third-party access should be carefully managed and monitored to ensure
that only authorized third parties can access the DBaaS.

 ✓ Auditing should be used to keep track of all access and changes to the
DBaaS. This can help identify any security incidents that may occur and
provide a record of the events that led up to the incident.

 ✓ Regular risk assessments are helpful to identify and mitigate any security
risks to the DBaaS. This can involve identifying vulnerabilities in the
system, assessing the potential impact of a security incident, and taking
steps to prevent the incident from occurring. Regular risk assessments can
help ensure that the DBaaS remains secure and compliant with regulations
over time.

Setting up a secure and compliant DBaaS requires implementing various
security measures such as authentication and authorization, encryption,
network security, vulnerability management, incident response, compliance,
third-party access management, auditing, and risk assessment. By taking
these measures, you can ensure that your DBaaS remains secure and
compliant with regulations and continues to be secure and compliant over
time.

Monitor and manage performance

Once your DBaaS is up and running you’ll want to ensure that it’s doing its
job and doing it well. These are the kinds of tools you’ll want to implement
for monitoring and managing performance.

Monitoring and logging

Establishing robust logging and monitoring practices ensure the DBaaS
is running optimally and will help to identify and troubleshoot issues.
Effective logging and monitoring also play a vital role in meeting regulatory

52

requirements, such as HIPAA, PCI-DSS, and GDPR, which mandate that
all access to sensitive data must be tracked and auditable. Here are some
considerations to keep in mind when setting up logging and monitoring for
your DBaaS:

Data collection
Collecting log data from the DBaaS is the first step in establishing a
comprehensive logging and monitoring strategy. There are different
types of logs that can be collected, such as query logs, error logs, and
transaction logs. These logs provide valuable information about the system’s
performance and any errors or issues that may be affecting it. There are
several tools available to collect log data from a DBaaS, such as Syslog,
Rsyslog, and Fluentd. These tools allow administrators to collect log data
from different sources and transmit it to a centralized location for analysis.

Storage
Once log data is collected, it must be stored in a centralized location for
easy access and analysis. Elasticsearch, Kibana, and Logstash are some of
the popular tools used for storing log data. These tools provide a powerful
search engine that enables administrators to quickly search through large
volumes of log data.

Analysis
Analyzing log data is critical in identifying patterns, troubleshooting issues,
and monitoring for security threats. Tools such as Splunk, Loggly, and Sumo
Logic provide advanced analytics and visualization features that allow
administrators to gain insights from log data.

Alerting
Setting up alerts to notify administrators of issues or suspicious activity is
essential in keeping the DBaaS running smoothly. Tools such as PagerDuty,

53

VictorOps, and Nagios enable administrators to set up alerts based on
specific criteria, such as CPU usage, memory utilization, and disk space.

Compliance
Ensuring that the logging and monitoring configuration complies with
relevant regulations such as HIPAA, PCI-DSS, and GDPR is essential. Audit
logging is a must-have feature for compliance, as it allows administrators to
track all access and changes to the DBaaS.

Additional considerations
 ✓ Retention policies should be set to ensure that log data is kept for the
appropriate amount of time.

 ✓ Searchability of log data is critical in ensuring easy access and analysis.
 ✓ Third-party access to log data should be monitored and managed to
maintain system security and compliance.

Setting up logging and monitoring is a critical component of building a
DBaaS infrastructure. Collecting and storing log data in a centralized
location, analyzing it, and setting up alerts can help administrators quickly
identify and troubleshoot issues, monitor for security threats, and ensure
compliance with regulatory requirements.

Managing performance

Managing performance is one of the most rewarding parts of running
a successful DBaaS. Here are some tips to help you ensure optimal
performance for your DBaaS:

Load testing
Regularly perform load testing to determine the capacity of your DBaaS and
identify any scalability issues that may need to be addressed. Load testing

54

simulates user traffic and helps you identify potential bottlenecks and areas
for improvement. This ensures that your DBaaS can handle the expected
workload and scale when necessary.

Capacity planning
Analyze performance metrics to understand resource utilization trends and
proactively plan for future resource needs. Capacity planning helps you
ensure that your DBaaS has enough resources to handle current and future
workloads. It involves monitoring resource utilization and identifying any
trends that suggest you may need to scale up or down.

Optimizing configurations
Regularly optimize database configurations to ensure optimal performance,
such as fine-tuning parameters like query performance, indexing strategies,
and memory management. Tuning the database configurations helps
you optimize the use of resources, reduce overhead, and improve overall
performance.

Performance tuning
Regularly perform performance tuning to identify areas for improvement
and optimize database performance, such as optimizing queries, indexes,
and caching strategies. Performance tuning helps you identify bottlenecks
and other issues that impact performance and allows you to take corrective
actions to improve database performance.

Performance optimization tools
Utilize performance optimization tools to automate performance tuning and
help identify performance issues, such as database profiling and performance
analysis tools. These tools provide valuable insights into the performance of
your DBaaS and help you optimize database performance more efficiently.

Regularly performing load testing, capacity planning, optimizing
configurations, performance tuning, and utilizing performance optimization
tools can help you ensure optimal performance, scalability, and efficiency for
your DBaaS.

55

Plan for disaster and recovery

When things go wrong, it pays to have a plan. Here are some points to
consider when creating a disaster and recovery plan for your DBaaS:

Disaster Recovery Planning
Developing a comprehensive disaster recovery plan is critical for maintaining
business continuity in the event of a disaster. A disaster recovery plan should
include a clear and documented process for recovering from a disaster,
including the steps required to restore backups, recover data, and resume
operations. Regular testing of your disaster recovery plan is also essential to
ensure that it is effective and up-to-date.

Offsite Backup Storage
Consider storing your backups offsite or in a remote location to ensure that
they are protected from local disasters. This could include backing up your
data to a cloud-based storage service or physically transporting backup
media to a secure offsite location. It is important to regularly test the
process of restoring backups from offsite storage to ensure that backups are
accessible and usable in the event of a disaster.

Automated Backup Management
Implementing automated backup management tools can simplify the backup
process and ensure that backups are completed regularly and efficiently.
These tools can also provide additional features, such as compression,
encryption, and incremental backups, that can help optimize storage and
minimize backup time. It is important to regularly test the process of restoring
backups created by automated backup management tools to ensure that
backups are complete and accurate.

56

Creating a comprehensive disaster recovery plan, storing backups offsite,
and implementing automated backup management tools are all essential
steps to ensure that your DBaaS is resilient and can recover quickly from a
disaster. Regularly testing these processes and making updates as needed
is also critical to ensure that your disaster and recovery plan is effective and
up-to-date.

Conclusion: A DBaaS of your own

Building a Sovereign DBaaS can be an intimidating task. However, by
considering the factors mentioned in each section of this article, it is possible
to roll your own DBaaS that is tailored to meet the specific needs of your
organization. From choosing the right database technology and designing
a scalable architecture to implementing robust logging and monitoring and
creating a comprehensive disaster recovery plan, every aspect of building a
successful DBaaS has been covered here.

By following these guidelines and best practices, you can ensure that
your DBaaS is resilient, secure, performant, and compliant with regulatory
requirements. With careful planning and execution, you can build a DBaaS
infrastructure that meets the unique needs of your organization while
providing flexibility, scalability, reliability, and cost-effectiveness.

www.severalnines.com

