
1

�B ba���� v�� . 1

The DevOps Guide
 to Database Backups

for MySQL and MariaDB

2

3

Table of Contents
1. Introduction 5

2. Impact of Storage Engine on Backup Procedure 6
 2.1. MyISAM/Aria 7
 2.2. InnoDB/XtraDB 7
 2.2.1. Transactions 7
 2.2.2. Crash Recovery 8
 2.2.3. MVCC 8
 2.3. MEMORY 9
 2.4. MyISAM, InnoDB and MEMORY Comparison 9

3. Backup Tools 11
 3.1. mysqldump 11
 3.1.1. How does it work? 11
 3.1.1.1. Non-transactional Tables 12
 3.1.1.2. Transactional Tables 13
 3.1.1.3. Flush Binary Logs 13
 3.1.2. Advantages 15
 3.1.3. Disadvantages 15
 3.2. Percona Xtrabackup 16
 3.2.1. How it works? 16
 3.2.2. Advantages 17
 3.2.3. Disadvantages 17
 3.3. Binary Log 18
 3.3.1. How it works? 18
 3.3.2. Advantages 20
 3.3.3. Disadvantages 20
 3.3.4. Restoring with Binary Logs 21
 3.3.4.1. Full Restore 21
 3.3.4.2. Partial Restore 22

4. Performing Backup Efficiently 24
 4.1. Backup Credentials 24
 4.2. Storage Engine 25
 4.3. Dataset Size 26
 4.4. Recovery Objective 27
 4.5. High Availability Setup 29
 4.6. Delta Size (changes between two backup points) 30
 4.7. Backup Size 31
 4.8. Encryption 32
 4.9. Dedicated Backup Server 34

5. Backup Management 36
 5.1. Backup Scheduling 36
 5.2. Backup Verification and Integrity 37
 5.2.1. mysqlcheck 37
 5.2.2. mysqldbcompare 37
 5.2.3. pt-table-checksum 39

4

 5.3. Backup Availability 40
 5.3.1. Onsite Storage 40
 5.3.2. Offsite Storage 40
 5.3.3. Hybrid Storage 40
 5.4. Backup Housekeeping 41
 5.5. Backup Failover 41

6. ClusterControl as Backup Manager 42

7. Conclusion 45

8. About Severalnines 46

9. Related Resources from Severalnines 47

Table of Contents

5

A key operational aspect of database management is to ensure that backups are
performed, so that a database can be restored if disaster strikes. Data loss can happen
in a number of circumstances: system crash, hardware failure, power failure, human
error (accidental DELETE or DROP) or even natural disaster (flood, earthquake, fire).
Some of these are almost impossible to prevent from happening. The DBA or System
Administrator is usually the responsible party to ensure that the data is protected,
consistent and reliable. Backups are an important part of a recovery strategy for your
data.

There are a number of ways to backup your database, but it is important to review the
RTO and RPO before deciding on a backup strategy. RTO (Recovery Time Objective) is
how long you have to recover your data, as it affects the length of your outage. RPO
(Recovery Point Objective) is the allowable data loss - how much data can you afford
to lose? A tighter RTO and RPO means you will need to spend more money on your
infrastructure.

This whitepaper gives an overview of the two most popular backup utilities available for
MySQL and MariaDB, namely mysqldump and Percona XtraBackup. We’ll also see how
database features like binary logging and replication can be leveraged in our backup
strategy. We will discuss some best practices that can be applied to high availability
topologies in order to make our backups reliable, secure and consistent.

Introduction

6

MySQL and MariaDB enables storage engines to be loaded into and unloaded from
a running database server. This modular architecture provides benefits to those who
wish to specifically target a particular application need, such as data warehousing,
transaction processing, or high availability. The storage engine implements a more
specific set of features required for a type of workload, therefore there is less system
overhead with the end result being higher database performance.

The following picture shows the storage engine architecture:

Since the data is stored inside the storage engine, we need to understand how the
storage engines work to determine the best backup tool. In general, MySQL backup
tools perform a special operation in order to retrieve a consistent data- either lock the
tables or establish a transaction isolation level that guarantees data read is unchanged.

On MySQL and MariaDB, the following storage engines are enabled by default:
• MyISAM - Default storage engine up until MySQL 5.5.5.
• InnoDB - Default storage engine since MySQL 5.5.5. XtraDB for Percona and

MariaDB.
• MEMORY - Hash based, stored in memory, useful for temporary tables.
• BLACKHOLE - anything you write to it disappears.
• CSV - Stores data in text files using comma-separated values format.

Impact of Storage Engine on
Backup Procedure

Connectors
Native C API, JDBC, ODBC, .NET, PHP, Python, Perl, Ruby, VB

MySQL Server

Connection Pool
Authentication - Thread Reuse - Connection limits - Check Memory - Caches

SQL Interface
DML, DDL, Stored
Procedures, View,

Trigger, etc.

Parser

Query Translation,
Object Privilege

Optimizer

Access Paths,
Statistics

Caches & Buffers
Global and Engine
Specific Caches &

Buffers

Pluggable Storage Engines
Memory, Index & Storage Management

InnoDB MyISAM Aria CSVMEMORY BLACKHOLE ARCIVE Custom

File System
NTFS, XFS,
Ext4, NFS

Files & Logs
Redo, Undo, Data, Index, Binary,

Error, Query and Slow

7

• ARCHIVE - store large amounts of unindexed data with a very small overhead.
• Aria - Crash-safe tables with MyISAM heritage. Available in MariaDB

distributions.

As you may notice, there are lots of storage engines preloaded into the MySQL/
MariaDB server. We are going to look into the most popular ones: MyISAM/Aria,
InnoDB/XtraDB and MEMORY.

2.1. MyISAM/Aria
MyISAM was the default storage engine for MySQL versions prior to 5.5.5. It is based on
the older ISAM code but has many useful extensions. The major deficiency of MyISAM
is the absence of transactions support.

Aria is another storage engine with MyISAM heritage and is a MyISAM replacement
in all MariaDB distributions. The main difference is that Aria is crash safe, whereas
MyISAM is not. Being crash safe means that an Aria table can recover from unexpected
failures in a much better way than a MyISAM table can. In most circumstances, backup
operations for MyISAM and Aria are almost identical.

MyISAM uses table-level locking. It stores indexes in one file and data in another.
MyISAM tables are generally more compact in size on disk when compared to InnoDB
tables. MyISAM uses key buffers for caching indexes and leaves the data caching
management to the operating system. With the nature of table-level locking and no
transaction support, the recommended way to backup MyISAM tables is to acquire the
global read lock by using FLUSH TABLE WITH READ LOCK (FTWRL) to make MySQL
read-only temporarily or use LOCK TABLE statement explicitly. Without that, MyISAM
backups will be inconsistent.

2.2. InnoDB/XtraDB
InnoDB is the default storage engine for MySQL and MariaDB. It provides the standard
ACID-compliant transaction features, along with foreign key support and row-level
locking.

Percona’s XtraDB is an enhanced version of the InnoDB storage engine for MySQL
and MariaDB. It features some improvements that make it perform better in certain
situations. It is backwards compatible with InnoDB, so it can be used as a drop-in
replacement.

There are a number of key components in InnoDB that directly influences the behaviour
of backup and restore operation:

• Transactions
• Crash recovery
• Multiversion concurrency control (MVCC)

2.2.1. Transactions
InnoDB does transactions. A transaction will never be completed unless each
individual operation within the group is successful (COMMIT). If any operation within
the transaction fails, the entire transaction will fail and any changes will be undone

8

(ROLLBACK).

The following example shows a transaction in MySQL (assuming autocommit is off):

A transaction starts with a BEGIN and ends with a COMMIT or ROLLBACK. In the above
example, if the MySQL server crashed after the first UPDATE statement completed, that
update would be rolled back.

2.2.2. Crash Recovery
InnoDB maintains a transaction log, also called redo log. The redo log is physically
represented as a set of files, typically named ib_logfile0 and ib_logfile1. The log
contains a record of every change to InnoDB data. When InnoDB starts, it inspects the
data files and the transaction log, and performs two steps:

1. Applies committed transaction log entries to the data files.
2. Performs an undo operation (rollback) on any transactions that modified data

but did not commit.

The rollback is performed by a background thread, executed in parallel with transactions
from new connections. Until the rollback operation is completed, new connections
may encounter locking conflicts with recovered transactions. In most situations, even if
the MySQL server was killed unexpectedly in the middle of heavy activity, the recovery
process happens automatically. No action is needed from the DBA.

Percona Xtrabackup utilizes InnoDB crash recovery functionality to prepare the
internally inconsistent backup (the binary copy of MySQL data directory) into a
consistent and usable database again. Details on this is explained in the Backup Tools
section.

2.2.3. MVCC
InnoDB is a multiversion concurrency control (MVCC) storage engine which means
many versions of a single row can exist at the same time. Due to this nature, unlike
MyISAM, InnoDB does not require a global read lock to get a consistent read. It utilizes
its ACID-compliant transaction component called isolation. Isolation is the “i” in the
acronym ACID - the isolation level determines the capabilities of a transaction to read/
write data that is accessed by other transactions.

From highest amount of consistency and protection to the least, the isolation levels
supported by InnoDB are:

• SERIALIZABLE
• REPEATABLE READ (default)
• READ COMMITTED
• READ UNCOMMITTED

Covering all isolation levels in this context is unnecessary. In order to get a consistent
snapshot of InnoDB tables, one could simply start a transaction with REPEATABLE

1	 BEGIN;
2	 UPDATE	account.saving	SET	balance	=	(balance	-	10)	WHERE	id	

=	2;
3	 UPDATE	account.current	SET	balance	=	(balance	+	10)	WHERE	id	

=	2;	
4	 COMMIT;

9

READ isolation level. In REPEATABLE READ, a read view is created at the start of the
transaction, and this read view is held open for the duration of the transaction. For
example, if you execute a SELECT statement at 6 AM, and come back in an open
transaction at 6 PM, when you run the same SELECT, then you will see the exact same
resultset that you saw at 6 AM. This is part of MVCC capability and it is accomplished
using row versioning and UNDO information.

Logical backup like mysqldump is using this approach to generate a consistent backup
for InnoDB without explicit table lock that can cause the MySQL server to be read-only.
Details on this as in the Backup Tools chapter.

2.3. MEMORY
The MEMORY storage engine (formerly known as HEAP) creates special-purpose tables
with contents that are stored in memory. Because the data is vulnerable to crashes,
hardware issues, or power outages, only use these tables as temporary work areas or
read-only caches for data pulled from other tables.

Despite the in-memory processing for MEMORY tables, they are not necessarily faster
than InnoDB tables on a busy server, for general-purpose queries, or under a read/write
workload. In particular, the table locking involved with performing updates can slow
down concurrent usage of MEMORY tables from multiple sessions.

Due to the transient nature of data from MEMORY tables (data is not persisted to disk),
only logical backup is capable of backing up these tables. Backup in physical format is
not possible.

2.4. MyISAM, InnoDB and MEMORY Comparison
The following table illustrates the differences between storage engines:

Feature MyISAM InnoDB MEMORY
Storage limits 256TB 64TB RAM
Transaction
support No Yes No

Recovery from
crash

Complete rebuild
tables/indexes

Recover from redo
logs Vulnerable to crash

MVCC No Yes No

Performance with
data growth

Slow down
dramatically

Performance
remain almost
unchanged

Performance
remain almost
unchanged

Foreign key
support No Yes No

Locking granularity Full table Row Full table
Fulltext Search
Index Yes No No

10

Feature MyISAM InnoDB MEMORY
Cluster Indexes No Yes Yes
Data Compression No Yes No
Data caches No Yes N/A

Storage of table

One table stored in
3 separate files:
• .FRM for table

format
• .MYD for data
• .MYI for indexes

Table stored in
table space -
consisting several
files (or raw disk
partitions)

In memory

The above comparison shows the differences in storage engines characteristics. This
helps us understand the way backup procedures should work, and ultimately reduce the
risk of recovery failure when it really matters.

11

A backup tool is an application that specifically designed to perform backup and restore
of your database. In this whitepaper, we will cover mysqldump, Percona Xtrabackup and
binary log. We are not going to cover other tools such as MySQL Enterprise Backup
(mysqldbackup), mydumper or storage snapshots technologies.

3.1. mysqldump
This standard backup tool comes with every MySQL/MariaDB client package. The
mysqldump client utility performs logical backups. It queries the MySQL/MariaDB server
and produces a set of SQL statements that can be executed to reproduce the original
database object definitions and table data.

3.1.1. How does it work?
Mysqldump can have different behaviour depending on the storage engine used. If
there is no option supplied, mysqldump will default to use option --opt. This option,
enabled by default, is shorthand for the combination of --add-drop-table	--add-
locks	--create-options	--disable-keys	--extended-insert	--lock-
tables	--quick	--set-charset. It gives a fast dump operation and produces
a dump file that can be quickly reloaded into a MySQL server. However, “--lock-
tables” locks tables for each database separately, this option does not guarantee
that the tables in the dump file are logically consistent between databases. Tables in
different databases may be dumped in completely different states.

Suppose you run the command with minimal options to backup:

For each database schema and table, a dump performs these steps:
1. LOCK TABLE table.
2. SHOW CREATE TABLE table.
3. SELECT * FROM table INTO OUTFILE temporary file.
4. Write the contents of the temporary file to the end of the dump file.
5. UNLOCK TABLES

The process is illustrated in the following diagram:

Backup Tools

1	 $	mysqldump	--user=root	--password	--all-databases	>	all-da-
tabase.sql

12

By default mysqldump doesn’t include routines and events in its output - you have to
explicitly set --routines and --events flags. One must be aware of the contents of
the database and execute mysqldump with parameters that take this into consideration,
as described in the next section.

3.1.1.1. Non-transactional Tables

If you run mysqldump against a database that contains non-transactional tables
(MyISAM for example), then mysqldump will have to lock all tables in the database to
ensure consistency. The following mysqldump command performs a consistent backup
on MyISAM tables:

The process flow can be described as per below:
1. FLUSH TABLES WITH READ LOCK - Global read lock and not table locks.
2. For each database schema and table, a dump performs these steps:

• SHOW CREATE TABLE.
• SELECT * FROM table INTO OUTFILE temporary file.
• Write the contents of the temporary file to the end of the dump file.

3. UNLOCK TABLES.

The process is illustrated in the following diagram:

Dump file

mysqldump
(lock-tables) Table Table

1	 $	mysqldump	--lock-all-tables	--user=root	--password	db1	>	
db1.sql

Dump file

mysqldump
(lock-all-tables) Table

TablesFTWRL

13

FLUSH TABLES WITH READ LOCK is the only way to guarantee a consistent snapshot
of MyISAM tables while the MySQL server is running. This will make the MySQL server
become read-only until UNLOCK TABLES is executed.

3.1.1.2. Transactional Tables

For tables on InnoDB storage engine, it is recommended to use --single-
transaction option. MySQL then produces a checkpoint that allows the dump to
capture all data prior to the checkpoint while receiving incoming changes. Those
incoming changes do not become part of the dump. That ensures the same point-in-
time for all tables. The --single-transaction option of mysqldump does not do
FLUSH TABLES WITH READ LOCK. It causes mysqldump to setup a REPEATABLE READ
transaction for all tables being dumped.

Consider the following mysqldump command for a database that only contains InnoDB
tables:

The process flow can be described as per below:
1. START TRANSACTION WITH CONSISTENT SNAPSHOT.
2. For each database schema and table, a dump performs these steps:

• SHOW CREATE TABLE table.
• SELECT * FROM table INTO OUTFILE temporary file.
• Write the contents of the temporary file to the end of the dump file.

3. COMMIT.

The process is illustrated in the following diagram:

To ensure a valid dump file while a --single-transaction dump is in process no
other connection should use the following DDL statements: ALTER TABLE, CREATE
TABLE, DROP TABLE, RENAME TABLE, TRUNCATE TABLE. A consistent read is not
isolated from those statements, so use of these on a table to be dumped can cause the
SELECT that is performed by mysqldump to retrieve incorrect contents for the table or
fail.

3.1.1.3. Flush Binary Logs

It is useful to create a new binary log whenever a mysqldump backup is taken. FLUSH
LOGS closes and reopens all log files. If binary logging is enabled, the sequence number

1	 $	mysqldump	--single-transaction	--user=root	--password	db1	
>	db1.sql

Dump file

mysqldump
(single-

transaction)

InnoDB/
XtraDB
tables

InnoDB/
XtraDB
tables

transaction

14

of the binary log file is incremented by one relative to the previous file. Consider the
following mysqldump command against InnoDB storage engine to include binary log
coordinates:

The process flow can be described as per below:
1. START TRANSACTION WITH CONSISTENT SNAPSHOT.
2. FLUSH TABLES WITH READ LOCK.
3. Get the binary log coordinates.
4. FLUSH LOGS.
5. UNLOCK TABLES.
6. For each database schema and table, a dump performs these steps:

• SHOW CREATE TABLE table.
• SELECT * FROM table INTO OUTFILE temporary file.
• Write the contents of the temporary file to the end of the dump file.

7. COMMIT.

The process is illustrated in the following diagram:

With --master-data flag, mysqldump has to acquire a global lock for a short period
of time and release it back once the binary log coordinates are retrieved. It can then
proceed with retrieving data consistently without the need to lock every table.

Mysqldump does not dump the information_schema database by default. To dump
information_schema, name it explicitly on the command line and also use the –skip-
lock-tables option. It also never dumps the performance_schema database and the
MySQL Cluster’s ndbinfo information database.

1	 $	mysqldump	--single-transaction	--master-data	--flush-logs	
--user=root	--password	db1	>	db1.sql

Dump file

mysqldump
(single-transaction,

master-data,
flush-logs)

InnoDB/
XtraDB
tables

InnoDB/
XtraDB
tables

Binary log

Binary log

FTWRL

coordinate

FLUSH LOGS

transaction

15

3.1.2. Advantages
mysqldump is probably the most popular backup method for MySQL. Advantages
include the convenience and flexibility of viewing or even modifying the output using
standard text tools before restoring. You can clone databases for development and DBA
work, or produce slight variations of an existing database for testing. It is also more
practical to do partial restore, where you just want to restore only certain rows or tables.

Mysqldump is fairly easy to use and pretty straightforward. It is also machine
independent and highly portable. The SQL dumps work in Windows and other
operating system supported by MySQL. It is also the perfect tool when migrating data
between different versions or storage engines of MySQL.

SQL dump files are also compression-friendly. Depending on the compression level
and tool used, you can achieve up to 15 times compression of the backup size. The
mysqldump command can also generate output in CSV, other delimited text or XML
format.

Indirectly, mysqldump also detects any corrupted data files. For example when a
mysqldump is taken, the data must be in a good state or an error would be generated
during the dump process.

3.1.3. Disadvantages
A mysqldump backup is slower than a physical backup, notably on a large dataset
because the server must access the database and convert the physical data into a
logical format. Mysqldump is a single-threaded tool and this is its most significant
drawback - performance is ok for small databases but it quickly becomes unacceptable
if the data set grows to tens of gigabytes.

Mysqldump will do, for each database and for each table, “SELECT	*	FROM	..” and
write the content to the mysqldump file. The problem with the “SELECT	*	FROM	..” is
the impact if you have a data set that does not fit in the InnoDB Buffer Pool. The active
data set (that your application uses) will take a hit when the “SELECT	*	FROM	..”
will load up data from disk, store the pages in the InnoDB Buffer Pool, and to do so,
expunge pages part of the active data set from the InnoDB Buffer pool. Hence you will
get a performance degradation on that node, since the active data set is no longer in
RAM but on disk.

Mysqldump backup must be performed against a running MySQL/MariaDB server.
Backups in logical format are large, particularly when saved in text format, and often
slow to create and restore. With large data sizes, even if the backup step takes a
reasonable time, restoring the data can be very slow because replaying the SQL
statements involves disk I/O for insertion, index creation, and so on.

There is no way to do an incremental backup with SQL dump. A full backup is executed
each time. This can be very time-consuming especially in large databases.

When using mysqldump with a non-transactional storage engine like MyISAM, a dump
holds a global read lock on all tables, blocking writes from other connections for the
duration of the full backup. The locking can be optional though. However without table
lock, there will be no guarantee of backup consistency.

The mysqldump backup does not include any MySQL related logs or configuration files,
or other database-related files that are not part of databases.

16

3.2. Percona Xtrabackup
Percona XtraBackup is the most popular, open-source, MySQL/MariaDB hot backup
software that performs non-blocking backups for InnoDB and XtraDB databases. It falls
into the physical backup category, which consists of exact copies of the MySQL data
directory and files underneath it.

Xtrabackup does not lock your database during the backup process, provided the
tables are running on InnoDB or XtraDB storage engine. For large databases (100+ GB),
it provides much better restoration time as compared to mysqldump. The restoration
process involves preparing MySQL data from the backup files, before replacing or
switching it with the current data directory on the target node.

Percona XtraBackup is a combination of the xtrabackup C program, and the
innobackupex Perl script. The xtrabackup program copies and manipulates InnoDB and
XtraDB data files, and the Perl script enables enhanced functionality, such as interacting
with a running MySQL/MariaDB server and backing up MyISAM tables. Percona
XtraBackup works with MySQL/MariaDB servers, as well as Percona Server with XtraDB.
It is also a recommended tool to perform State Snapshot Transfer (SST) in Galera
Cluster. It runs on Linux and FreeBSD.

The xtrabackup and innobackupex tools permit to do operations such as streaming and
incremental backups with various combinations of copying the data files, copying the
log files, and applying the logs to the data.

3.2.1. How it works?
Percona XtraBackup works by remembering the log sequence number (LSN) when it
starts, and then copying away the data files to another location. Copying data takes
some time, and if the files are changing, they reflect the state of the database at
different points in time. At the same time, XtraBackup runs a background process that
keeps an eye on the transaction log (aka redo log) files, and copies changes from it. This
has to be done continually because the transaction logs are written in a round-robin
fashion, and can be reused after a while. XtraBackup needs the transaction log records
for every change to the data files since it began execution.

xtrabackup/
innobackupex output

Backup
Destination

Redo log

InnoDB
(datadir)

InnoDB

St
ag

e
I

St
ag

e
II

Binary logMyISAM
(datadir)

monitor

copy

FTWRL

copy get
coordinate

17

Since the backup content is inconsistent, Percona Xtrabackup requires an additional
process for restoration, called prepare process. During this step, Percona XtraBackup
performs crash recovery against the copied data files, using the transaction log file.
After this is done, the database is ready to restore and use. The final step is to overwrite
(or swap) the content of MySQL datadir on the target server with the directory of the
prepared backup.

The innobackupex program adds more convenience and functionality by also allowing
to back up MyISAM tables and .frm files. It starts the xtrabackup process, waits until
it finishes copying files, and then issues FLUSH TABLES WITH READ LOCK to prevent
further changes to MySQL‘s data and flush all MyISAM tables to disk. During that
time, no query will be executed on the host. innobackupex holds this lock, copies the
MyISAM files, and then releases the lock.

The backed-up MyISAM and InnoDB tables will eventually be consistent with each other,
because after the prepare (recovery) process, InnoDB‘s data is rolled forward to the
point at which the backup completed, not rolled back to the point at which it started.
This point in time matches where the FLUSH TABLES WITH READ LOCK was taken, so
the MyISAM data and the prepared InnoDB data are in sync. In other words, the actual
point-in-time is a moving target until the backup process is complete. For example, if
Percona XtraBackup starts at midnight and lasts till 1:15 AM, then the backup’s actual
point-in-time is 1:15 AM.

3.2.2. Advantages
This method of raw backup is quicker than a logical backup (e.g. mysqldump), because
it does not convert the contents of the database into SQL queries. It simply copies data
files and the output is more compact than a logical backup. The main advantage of
xtrabackup over logical backups is its speed - performance is limited by your disk or
network throughput.

Percona Xtrabackup is very flexible. It supports multiple threads to copy the files
quicker, or use compression to minimize size of the backup. It is possible to create
a backup locally or stream it over the network using SSH tunnel or netcat. It is also
possible to create incremental backups which take significantly less disk space, as well as
less time to execute.

For large-scale full recovery, Percona Xtrabackup is usually faster to restore. The restore
step is basically a simple copy of the prepared binary files.

In addition to database data, the backup can include any related files such as log and
configuration files.

3.2.3. Disadvantages
Percona Xtrabackup needs to access the MySQL data directory locally. If you would
like to perform a remote backup, the xtrabackup process must be run on the MySQL
server locally and stream the backup to a separate host where the backup will be
stored - for example via SSH tunnel or netcat. Performing offline backup is not possible
since Percona Xtrabackup needs to access the MySQL server to check the version and
generate a list of tablespaces.

If your tables are primarily InnoDB tables, then you can perform a virtually non-blocking
backup. However, if you have a mix of InnoDB and MyISAM tables, or primarily MyISAM
tables, xtrabackup will impact the non-transactional tables during the FLUSH TABLE
WITH READ LOCK. Depending on the size of those tables, this may take a while. During

18

that time, no query will be executed on the host and MySQL is considered read only.

When restoring incremental backups, the overall restoration process is slower as deltas
have to be applied one after another and it may take a significant amount of time.
Some of the options also make it possible to restore down to table level, however it
cannot go down to row level. If one of the incremental backups is corrupted, the rest
will not be usable.

Percona Xtrabackup is portable only to other machines that have identical or similar
hardware characteristics. If the backup was taken on Linux machine, there is no
guarantee that it will work in Windows or BSD machine.

The is no option to FLUSH LOGS when taking the backup. Data from MEMORY tables
cannot be backed up in physical format because their contents are not stored on disk.

3.3. Binary Log
The binary log records changes made to the database. It is normally used for
replication, where the binary log allows the same changes to be made on the slaves
as well. The log contains queries like INSERT, UPDATE and DELETE. Binary logs can
be used to perform a logical, incremental, hot, non-locking backup and is critical in
MySQL replication. It has some performance impact on operations as all the changes
in the database are logged in real time. However, the benefits of the binary log in
enabling replication and performing restore operations generally overweigh the minor
performance impact.

MySQL/MariaDB binary logging is disabled by default. To enable this, you have to
configure log_bin inside the MySQL configuration file.

3.3.1. How does it work?
The events that specify modifications to data are stored in a series of files called
binlog files with names in the form [hostname]-bin.000001, together with a binlog
index file that keeps track of the existing binlog files. The index file is usually named
[hostname]-bin.index. These files are by default located under the MySQL data
directory. The names of the binlog files and the binlog index file can be controlled using
the log-bin and log-bin-index options. The index file keeps track of all the binlog
files used by the server so that the server can correctly create new binlog files when
necessary, even after server restarts. Each line in the index file contains the name of a
binlog file that is part of the binary log.

You can control the format to use when writing to the binary log using the option
binlog-format with following values:

Binary Log
Events

Binlog Index

19

• STATEMENT causes logging to be statement based.
• ROW causes logging to be row based.
• MIXED causes logging to use mixed (STATEMENT or ROW) format.

The FLUSH LOGS command writes all logs to disk and creates a new file to continue
writing the binary log. This can be useful when administering recovery images for point-
in-time-recovery. Reading from an active open binlog file can have unexpected results,
so it is advisable to force an explicit flush before trying to use binlog files for recovery.
Flushing binary logs is usually used together with mysqldump where you can instruct it,
with a flag, to flush the binary logs when performing backup. This will make the backup
consistent and the newly generated binary log will start fresh to record new database
changes after the backup.

MySQL provides a tool called mysqlbinlog to work with binary logs. It can be used to
display the contents in text format or display the contents of relay log files written by a
slave server in a replication setup, since relay logs have the same format as binary logs.
You can also use this tool to backup binary logs located locally or remotely.

To backup binary logs using mysqlbinlog, we first have to retrieve the names of the
binary logs currently available in the MySQL server, by using the following command:

Then, you can use the --read-from-remote-server option to connect and create a
copy of the binary logs in the backup destination:

This tool only allows to backup one binary log at a time, so some iteration might be
required to automate the process. Without the --result-file option, MySQL will
default to write in the current directory using the same name as the original log file.
Take note that you can just copy the binary log directory from the filesystem, but keep
in mind to skip the active binary log file (i.e., the one that is currently open by the
MySQL server). That is why FLUSH LOGS is important before each direct copying.

Start with a list of all the current binary logs:

1	 mysql>	SHOW	BINARY	LOGS;
2	 +---------------+-----------+
3	 |	Log_name						|	File_size	|
4	 +---------------+-----------+
5	 |	binlog.000130	|					27459	|
6	 |	binlog.000131	|					13719	|
7	 |	binlog.000132	|					43268	|
8	 +---------------+-----------+

1	 $	mysqlbinlog	--read-from-remote-server	--raw	--host	local-
host	--user=root	--password	binlog.000130	--result-file	/
storage/backups/binlogs/binlog.000130

1	 mysql>	SHOW	BINARY	LOGS;
2	 +---------------+-----------+
3	 |	Log_name						|	File_size	|
4	 +---------------+-----------+
5	 |	binlog.000002	|	911565723	|
6	 |	binlog.000003	|							217	|
7	 |	binlog.000004	|							217	|

20

Then, flush the log files so MySQL creates a new active binary log and keeps the rest
inactive:

You should see a new file has been created, in this example, binlog.00007:

Finally, copy all the binlogs except the recently flushed, binlog.000007 inside MySQL
data directory to the backup location accordingly:

3.3.2. Advantages
Binary log allows point-in-time recovery to happen. A backup reflects the state of the
database at a certain point in time, but the changes between two backup points are
not recorded. What if the server crashes a minute before the next backup should run?
You can restore from the last backup, but what about the transactions until the point
when the server crashed? By replaying the binary log to a server, repeating changes
that were recorded in the binary log, the MySQL server can be brought back to the
most up-to-date state of database right before the server crashed.

Because the binary log keeps a record of all changes, you can also use it for auditing
purposes to see what happened in the database.

3.3.3. Disadvantages
In real world, though, replaying binlogs is a slow and painful process. Of course, your
mileage may vary - it all depends on the amount of modifications to the database. The
replaying process which involves the mysqlbinlog utility can be complicated.

Running a server with binary logging enabled comes with a performance impact. Binary

8	 |	binlog.000005	|							217	|
9	 |	binlog.000006	|						8025	|
10	 +---------------+-----------+
11	 5	rows	in	set	(0.00	sec)

1	 $	mysqladmin	--user=root	--password	flush-logs

1	 mysql>	SHOW	BINARY	LOGS;
2	 +---------------+-----------+
3	 |	Log_name						|	File_size	|
4	 +---------------+-----------+
5	 |	binlog.000002	|	911565723	|
6	 |	binlog.000003	|							217	|
7	 |	binlog.000004	|							217	|
8	 |	binlog.000005	|							217	|
9	 |	binlog.000006	|						8069	|
10	 |	binlog.000007	|							194	|
11	 +---------------+-----------+

1	 $	cd	/var/lib/mysql
2	 $	cp	binlog.000002	binlog.000003	binlog.000004	binlog.000005	

binlog.000006	/storage/backups/binlogs

21

logs can eat up a significant amount of disk space if you have high database traffic, so
setting up an appropriate expire_log_days value is important. Or you have to purge
binary logs more frequently.

If you are using InnoDB tables and the transaction isolation level is READ COMMITTED
or READ UNCOMMITTED, only row-based logging can be used. It is possible to change
the logging format to STATEMENT, but doing so at runtime leads very rapidly to errors
because InnoDB can no longer perform inserts.

3.3.4. Restoring with Binary Logs
The procedure to restore from a point in time using binary logs is:

1. Restore the database from the last completed backup closest to the desired
recovery point.

2. Use the mysqlbinlog utility to restore to the desired point in time. The
mysqlbinlog utility converts the events in the binary log files from binary format
to text so that they can be executed or viewed.

3.3.4.1. Full Restore

The following shows the point-in-time recovery steps with binary log. In this example,
we have just restored from the latest backup and would like to bring the database to its
latest state just before server crashed.

1. We can determine which binlog file recorded the event by verifying the
modified time of the file. In this case, the event should be stored inside

2. Take note of the binary log file and position for the restored data when Percona
Xtrabackup was executed:

3. Replay the binary log up from the start position and send the output to the
MySQL Server:

The cluster will start to replay the log and catch up until the determined point.

1	 $	ls	-al	/var/lib/mysql
2	 -rw-rw----	1	mysql	mysql							126	Oct	22	05:18	bin-

log.000001
3	 -rw-rw----	1	mysql	mysql						1197	Oct	22	14:46	bin-

log.000002
4	 -rw-rw----	1	mysql	mysql							126	Oct	22	14:46	bin-

log.000003
5	 -rw-rw----	1	mysql	mysql			6943553	Oct	23	18:38	bin-

log.000004

1	 $	cat	/var/lib/mysql/xtrabackup_binlog_info
2	 binlog.000004			5840269

1	 $	mysqlbinlog	/var/lib/mysql/binlog.000004	--start-po-
sition=5840269	|	mysql	-uroot	-p

22

3.3.4.2. Partial Restore

If you want to do partial restore for a truncated table, we can replay the binary logs
until right before a TRUNCATE event happened to a server that caused missing rows.
Then, export the table to an SQL dump file and import it back to a running MySQL
server.

1. Use the mysqlbinlog tool with --base64-output=decode-rows to decode the
binlog and send the output to a file called decoded.txt:

2. Find the line number of the TRUNCATE event:

3. Look up the position number before the TRUNCATE event. In this case, the
binlog should be replayed up until position 6494999 because position 6495077
indicates the unwanted TRUNCATE event:

4. By tailing the last 15 lines before the TRUNCATE event, we can conclude that
after restoring the backups, we should replay the binlog from the recorded
binlog file and position of the backup set, up until binlog.000004 on position
6494999.
Replay the binary log up until the determined position and send the output to
the MySQL Server:

1	 $	mysqlbinlog	--start-datetime=”2016-10-23	17:30:00”	
--stop-datetime=”2016-10-23	18:30:00”	/var/lib/mysql/
binlog.000004	--base64-output=decode-rows	--verbose	>	
decoded.tx

1	 $	grep	-n	truncate	decoded.txt
2	 45375:truncate	t1

1	 $	head	-45375	decoded.txt	|	tail	-15
2	 ###	INSERT	INTO	`db1`.`t1`
3	 ###	SET
4	 ###			@1=8875
5	 ###			@2=’781673564aa9885eeea148ebc6a58b98’
6	 ###			@3=’r7LdRPhMa4kUpOLQKy033KufSw9CGYsnpInwfT8T-

WRo=’
7	 ###			@4=5645
8	 ###			@5=’06:10:45	PM’
9	 #	at	6494972
10	 #161023	18:10:45	server	id	1		end_log_pos	6494999							

Xid	=	8978
11	 COMMIT/*!*/;
12	 #	at	6494999
13	 #161023	18:10:45	server	id	1		end_log_pos	6495077							

Query			thread_id=15487	exec_time=0					error_code=0
14	 use	`db1`/*!*/;
15	 SET	TIMESTAMP=1382551845/*!*/;
16	 truncate	t1

23

5. Export the data for the table so we can load it into the running cluster. We
will export all columns except the primary key column because the AUTO_
INCREMENT values have been repeated since the truncate happened. This will
avoid DUPLICATE ENTRY errors:

Now you can import the data into the running MySQL server. Log into one of
the MySQL server and start the import process:

Binary logs restoration is not straightforward, but it is a safe bet for your data. It
increases the probability of your data being restored to a correct state in almost any
kind of data loss scenario.

1	 $	mysqlbinlog	/var/lib/mysql2/binlog.000004	
--start-position=5840269	--stop-position=6494999	|	
mysql	-uroot	-p

1	 mysql>	SELECT	data,extra,value,time	
2	 INTO	OUTFILE	‘/tmp/truncated_data.sql’	
3	 FIELDS	TERMINATED	BY	‘,’	
4	 OPTIONALLY	ENCLOSED	BY	‘”’	
5	 LINES	TERMINATED	BY	‘\n’	
6	 FROM	db1.t1;
7	 Query	OK,	2725	rows	affected	(0.00	sec)

1	 mysql>	LOAD	DATA	LOCAL	INFILE	‘truncated_data.sql’	
2	 INTO	TABLE	db1.t1	
3	 FIELDS	TERMINATED	BY	‘,’	
4	 OPTIONALLY	ENCLOSED	BY	‘”’	
5	 LINES	TERMINATED	BY	‘\n’	(@col1,@col2,@col3,@col4)	
6	 SET	data=@col1,	extra=@col2,	value=@col3,	time=@col4;
7	 Query	OK,	2725	rows	affected	(0.26	sec)
8	 Records:	2725		Deleted:	0		Skipped:	0		Warnings:	0

24

All of the backup methods have their pros and cons. They also have their requirements
when it comes to how they affect regular workloads. As usual, your backup strategy will
depend on the business requirements, the environment you operate in and resources at
your disposal.

Backup should be planned according to the restoration requirement. Data loss can be
full or partial. For instance, you do not always need to recover the whole data. In some
cases, you might just want to do a partial recovery by restoring missing tables or rows.

Percona Xtrabackup can be used in many backup scenarios. Having mysqldump is
also important for partial recovery, where corrupted databases can be corrected by
analysing at the contents of the dump. Binary logs allow us to achieve point-in-time
recovery, e.g., up to right before the MySQL server went down.

In the next sections, we’ll look at the different factors that contribute to efficient backup
and restore procedures.

4.1. Backup Credentials
Performing backup requires a valid user to access the MySQL Server. You can, of course
use the MySQL root user to perform backup and restore since it holds super-user
privileges and it is intended for low-level administration purposes. It is recommended
to create a dedicated backup user that holds specific privileges for backup purposes, as
shown in the following commands.

To create a user, simple use the following CREATE USER statement:

Then, GRANT the user with specific privileges for backup purposes and FLUSH the user
privileges table:

To simplify the backup and restore process, it is recommended to store these
credentials where MySQL can look for it. In this way, we’re avoiding to explicitly specify
the password in the command line which will return the following warning:

Performing Backup Efficiently

1	 mysql>	CREATE	USER	‘backupuser’@’localhost’	IDENTIFIED	BY	
‘backuppassword’;

1	 mysql>	GRANT	SELECT,	INSERT,	CREATE,	RELOAD,	PROCESS,	SUPER,	
LOCK	TABLES,	REPLICATION	CLIENT,	EVENT,	CREATE	TABLESPACE	

2	 ON	*.*	
3	 TO	‘backupuser’@’localhost’;
4	 mysql>	FLUSH	PRIVILEGES;

1	 mysql:	[Warning]	Using	a	password	on	the	command	line	inter-
face	can	be	insecure.

25

By default, mysqldump loads all options under the [mysqldump] directive while
Percona Xtrabackup reads [xtrabackup] directive inside the MySQL configuration file,
or the user’s option file. Setting this up before performing any backup operations will
reduce the complexity of the backup commands, since we do not have to specify the
loaded options anymore.

Inside the MySQL configuration file (my.cnf), adding the following lines will do the trick:

Now you can perform a mysqldump command without the need to specify host and
user credentials:

4.2. Storage Engine
You can verify if your databases are running on a mixed storage engine by using the
following query:

If you have storage engines that do not support transaction (e.g. MyISAM, Aria,
MEMORY), mysqldump and Percona Xtrabackup will likely have to lock the tables
while the backup is taken. Lock tables will make the MySQL server read-only to ensure
consistency during the backup. This is crucial factor to determine the most efficient way
to perform a logical backup, where extra options are necessary in the backup command
line.

To get a consistent backup on non-transactional storage engine, one must do:

If the storage engine supports transaction (e.g. InnoDB), mysqldump does not
require table locking to some extent. For InnoDB, it is sufficient to use “--single-
transaction” to get a consistent backup. When using this option, you should keep
in mind that only InnoDB tables are dumped in a consistent state. For example, any
MyISAM or MEMORY tables dumped while using this option may still change state:

1	 [mysqldump]
2	 user=backupuser
3	 password=backuppassword
4	 host=localhost
5	
6	 [xtrabackup]
7	 user=backupuser
8	 password=backuppassword
9	 host=localhost

1	 $	mysqldump	--single-transaction	db1	>	db1.sql

1	 SELECT	TABLE_SCHEMA,	TABLE_NAME,	ENGINE	
2	 FROM	information_schema.TABLES	
3	 WHERE	TABLE_SCHEMA	
4	 NOT	IN	(‘mysql’,’information_schema’,’performance_schema’);

1	 $	mysqldump	--lock-all-tables	--all-databases	>	backup.sql

26

However, if the “--master-data” option is appended, mysqldump still requires a
global read lock to get the precise binlog coordinates prior to starting the REPEATABLE-
READ transaction. The “--master-data” option triggers this lock, it is then released
once the binlog coordinates have been obtained. Percona XtraDB 5.6 introduces a new
option called LOCK TABLES FOR BACKUP to overcome this limitation, which allows a
virtually lock-less backup through “--lock-for-backup” flag:

If you do have a hybrid mix of storage engines, Percona Xtrabackup handles this with
more efficiency. The locking will only happen during the MyISAM phase of the backup.
The bottomline is that one should avoid using MyISAM tables if possible, except for the
mysql system tables.

For Aria storage engine, there is a limitation in Percona Xtrabackup. The issue is that
the engine uses recovery log files and an aria_log_control file that are not backed
up by xtrabackup. Starting MariaDB without the aria_log_control file, MariaDB will
mark all the Aria tables as corrupted with this error when doing a CHECK on the table:

This means that the Aria tables from an xtrabackup backup must be repaired before
being usable (this can take quite long time depending on the size of the table). Another
option is to perform a check on all Aria tables present in the backup after the prepare
phase:

4.3. Dataset Size
You can get the total database size by using the following query:

This will give you a ballpark figure. The column index_length is not used in
mysqldump because it does not dump indexes, only data.

Bigger dataset usually means longer backup time. Using a simple rule of thumb, if
you have database with less than 10GB in size and it fits into the InnoDB buffer pool,
using mysqldump with binary logs enabled is a safe bet. The reason is that for most
workloads, you will not notice much performance degradation despite the restoration
time might be vary. For a dataset with hundreds of gigabytes of data, mysqldump is
too slow to be useful and it can literally take days to restore a couple of hundred of

1	 $	mysqldump	--single-transaction	--all-databases	>	backup.
sql

1	 $	mysqldump	--single-transaction	--lock-for-backup	--all-da-
tabases	>	backup.sql

1	 “Table	is	from	another	system	and	must	be	zerofilled	or	re-
paired	to	be	usable	on	this	system.“

1	 $	aria_chk	--zerofill	[tablename]

1	 SELECT	SUM(ROUND(((data_length	+	index_length)	/	1024	/	1024	
/	1024),	2))	AS	“Size	in	GB”	

2	 FROM	information_schema.TABLES;

27

gigabytes. Usually when you need to restore from a backup, you are in some sort of
emergency, and the restore process that takes days is not an option.

Percona Xtrabackup performs binary backups of heavily loaded MySQL servers in a
relatively short time. For faster full recovery of a large dataset, this is the recommended
way. The backup needs to be prepared beforehand with --prepare option by
replaying the InnoDB redo log to a point where the backup ends:

Ensure you see the last line contains “completed	OK!”. It indicates the backup is
prepared and is ready to be restored. It is important to note that the MySQL server
needs to be shut down before restore is performed. You can’t restore to a datadir of a
running mysqld instance (except when importing a partial backup). With a single copy
command, you should then be ready to start the MySQL server with the prepared data
(assuming in my.cnf, you have “datadir=/var/lib/mysql”):

Take note that when restoring Xtrabackup incremental backups, the overall restoration
process is slower as deltas have to be applied one after another (using “--apply-log-
only” option).

With a small dataset, many might choose mysqldump instead because it is more
straightforward to restore. However, with large data sizes, even if the mysqldump
process takes a reasonable time, restoring the data can be very slow. Replaying the SQL
statements involves disk I/O for insertion, index creation, and so on.

4.4. Recovery Objective
MySQL backup can be used to recover the whole dataset on a new server, set up a
slave for asynchronous replication or upgrade to another major MySQL version. For this
reason, having a schedule with full backups is a good practice. A common mistake by
sysadmins is to forget to copy the binary logs as part of the backup files. Also, backing
up using mysqldump for staging up a slave in the future requires additional options on
the backup command, as shown in the next section - High Availability Setup.

The following commands suffice to take a full backup on mysqldump and Percona
Xtrabackup:

If Global Transaction Identifier (GTID) with InnoDB (GTIDs aren’t available with MyISAM)
is enabled, one should use the --set-gtid-purged=OFF option for portability:

1	 $	xtrabackup	--backup	--target-dir=/storage/backups/full	#	
backup

2	 $	xtrabackup	--prepare	--target-dir=/storage/backups/full	#	
prepare

1	 $	systemctl	stop	mysql
2	 $	xtrabackup	--copy-back	--target-dir=/data/backups/
3	 $	chown	-R	mysql:mysql	/var/lib/mysql
4	 $	systemctl	start	mysql

1	 $	mysqldump	--single-transaction	--triggers	--events	--rou-
tines	--all-databases	>	full-backup.sql

2	 $	xtrabackup	--backup	--target-dir=/storage/full-backup

28

If you are using binary columns to store blobs, it is recommended to use --hex-
blob, to safeguard against special characters that might be there. Mysqldump will use
hexadecimal notation instead, for example, ‘abc’ becomes 0x616263:

In some occasions, you might need to use the backup for partial recovery, restoring
only a single row, table or database. Having mysqldump is more practical since you
can generate a dump file per database and directly view/modify the content of the
dump file via text editor. It is recommended to backup data and schema separately
and disable “--extended-insert” to get a more organized view of SQL statements in
the dump file. The following commands perform mysqldump against InnoDB storage
engine, and generates separate dump files per database:

Percona Xtrabackup also comes with an option called “--export”, which basically
allows restoring individual tables. However the destination server must be running
either Percona Server with XtraDB or MySQL 5.6 with innodb_file_per_table
enabled. Restoring partial backup with Xtrabackup should be done by importing the
tablespace, not by using the --copy-back option. During the prepare stage, one
would perform the following:

You should see three files being created on the exported backup, as per below:

Then, import the table by discarding the current tablespace, copy them to the target
database directory and import the copied tablespace:

1	 $	mysqldump	--single-transaction	--set-gtid-purged=OFF	
--triggers	--events	--routines	--all-databases	>	full-back-
up.sql

1	 $	mysqldump	--single-transaction	--set-gtid-purged=OFF	
--triggers	--events	--routines	--hex-blob	--all-databases	>	
full-backup.sql

1	 $	mysqldump	--single-transaction	--extended-insert=0	
--no-create-info	[db_name]	>	[db_name]-data.sql

2	 $	mysqldump	--no-data	[db_name]	>	[db_name]-schema.sql

1	 $	innobackupex	--apply-log	--export	/path/to/partial/backup

1	 $	find	/storage/backups/mysql/	-name	mytable.*
2	 /data/backups/mysql/db1/mytable.exp
3	 /data/backups/mysql/db1/mytable.ibd
4	 /data/backups/mysql/db1/mytable.cfg

1	 mysql>	ALTER	TABLE	mydatabase.mytable	DISCARD	TABLESPACE;
2	 $	copy	/data/backups/mysql/db1/mytable.exp	/var/lib/mysql/

db1
3	 $	copy	/data/backups/mysql/db1/mytable.ibd	/var/lib/mysql/

db1
4	 $	copy	/data/backups/mysql/db1/mytable.cfg	/var/lib/mysql/

db1	#	if	importing	to	MySQL	5.6	only
5	 mysql>	ALTER	TABLE	db1.mytable	IMPORT	TABLESPACE;

29

Once this is executed, data in the imported table will be available.

4.5. High Availability Setup
It is common nowadays to have a high availability setup using either MySQL Replication
or Galera Cluster. It is not necessary to backup all members in the replication chain
or cluster. Since all nodes are expected to hold the same data (unless the dataset is
sharded across different nodes), it is recommended to perform backup on only one
node (or one per shard).

For MySQL Replication, the backup should be performed on a slave provided it does
not lag behind during the backup time. If you have binary logging enabled on the
slave (e.g. GTID replication), it is recommended to append ”--master-data“ including
”--apply-slave-statements“ in the mysqldump command options. This is to
simplify the process of staging up the new slave. These two options are helpful in
setting up the slave during the restoration of mysqldump, skipping the part that you
have to explicitly execute to run the slave. If you look at the content of the dump file,
you should see the following lines:

If the backup is taken using Percona Xtrabackup, the default options will automatically
include a file under the backup directory called xtrabackup_binlog_info (as well
as xtrabackup_info) which contains the binary log file, position and GTID of the last
change (if enabled). Take note that Percona Xtrabackup requires the same major version
of MySQL servers on the new slave. For example, if the backup was taken on MySQL
5.5, the target server must be running on MySQL 5.5 as well. If you would like to mix the
MySQL versions in a single replication chain, you should use mysqldump instead.

In case of Galera Cluster, the backup might occasionally stall the cluster during the
process. Fortunately, you can perform the backup in desynchronization mode with
“wsrep_desync=ON”. When you allow the node to desync from the cluster momentarily,
the cluster performance won’t get degraded during the duration of desync, which is
suitable for backup workloads. However there is a risk that if the node does not get
back in sync before desync is disabled, it still may cause some performance impact on
the cluster.

For that particular reason, one might do:

The above is also true for Percona Xtrabackup, and you can also use --galera-info
with Percona Xtrabackup. It then creates the xtrabackup_galera_info file which
contains information about the local node state at the time of the backup:

1	 				STOP	SLAVE;	
2	 				SET	@@GLOBAL.GTID_PURGED=	..	;	--	if	GTID	is	enabled
3	 				CHANGE	MASTER	..	;	
4	 				<dump	content>
5	 				START	SLAVE;

1	 $	mysql	-uroot	-p	-e	‘SET	GLOBAL	wsrep_desync=ON’
2	 $	mysqldump	--single-transaction	--all-databases	--events	

--triggers	>	full_backup.sql
3	 $	mysql	-uroot	-p	-e	‘SET	GLOBAL	wsrep_desync=OFF’

30

Another option is to attach an asynchronous slave to the Galera Cluster for a loosely-
coupled setup, which brings additional benefits as explained in the Dedicated Backup
Server section further below. Enabling binary logging might be unnecessary in Galera
Cluster because you have an exact copy of the data on the other cluster nodes.
However, in case if you would like to have an asynchronous slave attached to one of the
Galera nodes, it’s recommended to to enable only on one designated master.

It is mandatory to enable log_slave_updates on a Galera node so events originating
from the other cluster nodes are captured when local slave threads apply writesets.

4.6. Delta Size (changes between two backup points)
If your database workload is write-intensive, you might find the difference in size
between the two latest full backups to be fairly huge, for example 1GB for a 10GB
dataset per day. Performing regular full backups on databases with this kind of workload
will likely introduce performance degradation, and it might be more efficient to perform
incremental backups. Ultimately, this kind of workload will bring the database to a state
where the backup size is rapidly growing and physical backup might be the only way
to go. Percona Xtrabackup is very handy in this situation and incremental backup is
supported right out-of-the-box.

To make an incremental backup, one must begin with a full backup as shown in the
following example:

Then, proceed with incremental backups later on:

When restoring the incremental backups, use the --apply-log-only option during
the prepare stage except for the last one:

Once prepared, the backup can be restored using --copy-back option.

If you choose to use mysqldump to do a full backup, having binary logs is

1	 $	innobackupex	--galera-info	/storage/backups/galera

1	 $	xtrabackup	--backup	--target-dir=/storage/backups/full

1	 $	xtrabackup	--backup	--target-dir=/storage/backups/inc1	
--incremental-basedir=/storage/backups/full

2	 $	xtrabackup	--backup	--target-dir=/storage/backups/inc2	
--incremental-basedir=/storage/backups/inc1

3	 $	xtrabackup	--backup	--target-dir=/storage/backups/inc3	
--incremental-basedir=/storage/backups/inc2

1	 $	xtrabackup	--prepare	--apply-log-only	--target-dir=/stor-
age/backups/base

2	 $	xtrabackup	--prepare	--apply-log-only	--target-dir=/stor-
age/backups/inc1

3	 $	xtrabackup	--prepare	--apply-log-only	--target-dir=/stor-
age/backups/inc2

4	 $	xtrabackup	--prepare	--target-dir=/storage/backups/inc3

31

recommended for incremental backup. Thus, making sure the binary logs are backed
up properly is critical for recovery. You can use the mysqlbinlog utility to achieve this.
Flushing binary logs is also required for each full backup interval and ensures the binary
log will not expire during this interval. For example, if you schedule a mysqldump every
Sunday, ensure expire_log_days is more than 7 days. Take note that binary logs
can be very huge for write-intensive workloads, and they come with a price of longer
recovery time.

4.7. Backup Size
If you take a plain backup, the backup size is usually similar size to the size of the actual
database. If you have a limited storage space backed by an outdated disk subsystem,
compression is your friend. Take note that performing compression is a CPU intensive
process and can directly impact the performance of your MySQL server. However,
some environments have a period of low database traffic and using compression can
save you a lot of space. It is a bit of tradeoff of processing power over storage space,
reducing the risk of server crash caused by a full disk.

There are lots of compression tools available out there, namely gzip, bzip2, zip, rar and
7z. These tools can do both compression and archiving (packing multiple files into one).
Here are some typical ratings in terms of speed, availability and typical compression
ratio:

Domain Justification Rating

Compression speed Fast > slow gzip, zip > bzip2 > 7z >
rar

Compression ratio Better > worse 7z > rar, bzip2 > gzip >
zip

Decompression speed Fast > slow gzip, zip > 7z > rar >
bzip2

Availability
UNIX gzip > bzip2 > zip > 7z >

rar

Windows zip > rar > 7z > gzip,
bzip2

The above ratings are somewhat subjective, but in general terms, they give a good
indication of what to expect. The two most popular tools for compression are gzip and
bzip2, which are widely available in UNIX environment. As you can see, bzip2 offers
better compression ratio but is slower while gzip is overall faster. If having a smaller
backup size is important in your environment, use bzip2. Otherwise, gzip is a good
choice.

Normally, mysqldump can have very good compression rates as it is a flat text file.
Depending on the compression tool and ratio, a compressed mysqldump can be up to
6 times smaller than the original backup size. To compress the backup, you can pipe the
mysqldump output to a compression tool and redirect it to a destination file:

32

If you want a smaller dump size, you can also skip several things like comments, lock
tables statement (if InnoDB), skip GTID purged and triggers:

With Percona Xtrabackup, you can use the streaming mode (innobackupex), which
sends the backup to STDOUT in special tar or xbstream format instead of copying files
to the backup directory. Having a compressed backup could save you up to 50% of the
original backup size, depending on the dataset. Append the --compress option in the
backup command as per below:

By using the xbstream in streaming backups, you can additionally speed up the
compression process by using the --compress-threads option. This option specifies
the number of threads created by xtrabackup for parallel data compression. The default
value for this option is 1. To use this feature, simply add the option to a local backup, for
example:

Before applying logs during the preparation stage, compressed files will need to be
decompressed using xbstream:

Then, use qpress to extract each file ending with .qp in their respective directory before
running --apply-log command to prepare the MySQL data.

4.8. Encryption
If your MySQL server or backup destination is located in an exposed infrastructure like
public cloud, hosting provider or connected through an untrusted WAN network, it is
probably a good idea to enforce encryption to enhance the security of backup data. A
simple use case to enforce encryption is where you want to push the backup to an off-
site backup storage located in the public cloud.

When creating an encrypted backup, one thing to have in mind is that it usually takes
more time to recover. The backup has to be decrypted prior to any recovery activities.
With a large dataset, this could introduce some delays to the RTO. On the other hand,
if you are using private key for encryption, make sure to store the key in a safe place.

1	 $	mysqldump	--single-transaction	--all-databases	|	gzip	>	/
storage/backups/all-databases.sql.gz

2	 $	mysqldump	--single-transaction	--all-databases	|	bzip2	>	/
storage/backups/all-databases.sql.bz2

1	 $	mysqldump	--single-transaction	--skip-comments	
--skip-triggers	--skip-lock-tables	--set-gtid-purged	OFF	
--all-databases	|	gzip	>	/storage/backups/all-databases.sql.
gz

1	 $	innobackupex	--stream=tar		./	>	backup.xbstream

1	 $	innobackupex	--stream=xbstream	--compress	--com-
press-threads=4	./	>	/storage/backups/backup.xbstream

1	 $	xbstream	-x	<	/storage/backups/backup.xbstream

33

If the private key is missing, the backup will be useless and unrecoverable. If the key is
stolen, all created backups that use the same key would be compromised as they are no
longer secured. You can use the popular GnuPG or OpenSSL to generate the private or
public keys.

To perform mysqldump encryption using GnuPG, generate a private key and follow the
wizard accordingly:

Create a plain mysqldump backup as usual:

Encrypt the dump file and remove the older plain backup:

GnuPG will automatically append .gpg extension on the encrypted file. To decrypt,
simply run the gpg command with --decrypt flag:

To create an encrypted mysqldump using OpenSSL, one has to generate a private key
and a public key:

This private key (dump.priv.pem) must be kept in a safe place for future decryption. For
mysqldump, an encrypted backup can be created by piping the content to openssl, for
example:

To decrypt, simply use the private key (dump.priv.pem) alongside the -decrypt flag:

Percona XtraBackup can be used to encrypt or decrypt local or streaming backups with
xbstream option in order to add another layer of protection to the backups. Encryption
is done with the libgcrypt library. Both --encrypt-key option and --encrypt-
key-file option can be used to specify the encryption key. Encryption keys can be
generated with commands like:

1	 $	gpg	--gen-key

1	 $	mysqldump	--routines	--events	--triggers	--single-transac-
tion	db1	|	gzip	>	db1.tar.gz

1	 $	gpg	--encrypt	-r	‘admin@email.com’	db1.tar.gz
2	 $	rm	-f	db1.tar.gz

1	 $	gpg	--output	db1.tar.gz		--decrypt	db1.tar.gz.gpg

1	 $	openssl	req	-x509	-nodes	-newkey	rsa:2048	-keyout	dump.
priv.pem	-out	dump.pub.pem

1	 $	mysqldump	--routines	--events	--triggers	--single-transac-
tion	database	|	openssl	smime	-encrypt	-binary	-text	-aes256	
-out	database.sql.enc	-outform	DER	dump.pub.pem

1	 $	openssl	smime	-decrypt	-in	database.sql.enc	-binary	-in-
form	DEM	-inkey	dump.priv.pem	-out	database.sql

34

This value then can be used as the encryption key. Example of the innobackupex
command using the --encrypt-key:

The output of the above OpenSSL command can also be redirected to a file and can be
treated as a key file:

Use it with the --encrypt-key-file option instead:

To decrypt, simply use the --decrypt option with appropriate --encrypt-key or
--encrypt-key-file:

4.9. Dedicated Backup Server
A dedicated backup server is a good approach to minimizing the risks of touching
production servers. A backup server is usually an isolated slave connected to the
production servers via asynchronous replication. A good backup server consists of
plenty of disk space for backup storage, with the ability to do storage snapshots. It
does not really need to be as powerful as the servers handling production workload,
but still must be decent enough to avoid severe replication lag.

Taking a MySQL backup on a dedicated backup server will simplify your backup plans.
Since it uses loosely-coupled asynchronous replication, it will unlikely cause additional
overhead to the production database. However, this server is exposed to a single point
of failure with the possibility of inconsistent backup if the backup server regularly lags
behind. A best practice when automating the process is to ensure the backup server
has caught up with the designated master prior to executing the backup. To check how
behind the slave is, you can use the following statement and look for “Seconds_Behind_
Master” value:

If the backup server is dedicated for backup storage, you can stream the backup over
network to this server using a combination of compression (gzip, tar and xbstream)
alongside network interaction tools like SSH, rsync or netcat. With mysqldump, you can

1	 $	openssl	rand	-base64	24
2	 bWuYY6FxIPp3Vg5EDWAxoXlmEFqxUqz1

1	 $	innobackupex	--encrypt=AES256	--encrypt-key=”bWuYY6FxIP-
p3Vg5EDWAxoXlmEFqxUqz1”	/storage/backups/encrypted

1	 $	openssl	rand	-base64	24	>	/etc/keys/pxb.key

1	 $	innobackupex	--encrypt=AES256	--encrypt-key-file=/etc/keys/
pxb.key	/storage/backups/encrypted

1	 $	innobackupex	--decrypt=AES256	--encrypt-key=”bWuYY-
6FxIPp3Vg5EDWAxoXlmEFqxUqz1”	/storage/backups/encrypt-
ed/2016-10-18_10-20-14/

1	 SHOW	SLAVE	STATUS\G

35

use gzip and SSH to compress and stream the created backup to the another server:

Or, use mysqldump to connect to the target MySQL server remotely and perform the
dump (provided you are running the same MySQL client version as that of the target
server):

With Percona Xtrabackup, you can use --stream option (available in innobackupex)
to send it to another server instead of storing it locally. There are two streaming tools
supported, tar and xbstream:

The main advantage with this setup is that it simplifies the management of backup
storage by consolidating backups in one centralized location. By keeping data in one
place, it’s easier to manage both the hardware and the data itself. That means closer
control on data protection, version control and security with a consistent set of data.
It also means better control of hardware configuration, capacity and performance. By
focusing your efforts in one place, it should also reduce expenditure and risk. Other
benefits in having a dedicated backup server is that you can use it as a sandbox to
perform regular backup verifications, create a staging MySQL server to extract partial
data or prepare the restore data before copying the MySQL data directory onto the
target server.

1	 $	mysqldump	--single-transaction	--triggers	--events	--rou-
tines	--hex-blob	--set-gtid-purged=OFF	--all-databas-
es	|	gzip	-c	|	ssh	root@storage	‘cat	>	/storage/backups/
full-backup.sql.gz’

1	 $	mysqldump	--host	slave1	--port	3306	--single-transac-
tion	--triggers	--events	--routines	--hex-blob	--set-gtid-
purged=OFF	--all-databases	|	gzip	-c	>	/storage/backups/
full-backup.sql.gz

1	 #	using	tar
2	 $	innobackupex	--stream=tar	./	|	ssh	root@storage	“cat	-	>	/

storage/backups/fullbackup.tar”
3	 #	using	xbstream
4	 $	innobackupex	--compress	--stream=xbstream	/storage/back-

ups/	|	ssh	root@storage	“xbstream	-x	-C	/storage/backups/”

36

Making sure that backups run successfully every day can be a chore – checking whether
each job has completed successfully, re-running jobs that failed, swapping out disks and
removing data off site. All these tasks take up time and add zero business value. Then
there is also the task of restoring data or configurations, when there is a problem with
the database or request from the application developer or QA.

Performing a backup is easy. The harder part is to ensure the backups are organized,
usable, available and manageable from the Ops perspective. The number of backup
files will grow, database sizes will grow over months and years, and backup procedures
will become more complex - especially with all the utilities required to make it all work.
Therefore, we must carefully plan our backup strategy from the beginning in order to
avoid issues further down the line.

5.1. Backup Scheduling
Performing regular backups of your database is imperative for high availability and
disaster recovery. If for any reason you lost your entire cluster and had to do a full
restore from backup, you would need a reliable and up-to-date backup to start from.

Some recommendations to consider for a good backup strategy:
• You should be able to completely recover from a catastrophic failure from

at least two previous full backups. Just in case the most recent full backup is
damaged, lost, or corrupt.

• Your backup should contain at least one full backup within a chosen cycle,
normally weekly.

• Store backups away from the current data location, preferably off site.
• Use a mixture of mysqldump and Xtrabackup for extra safety, and not rely on

only one method.
• Test restore your backups on a regular basis, e.g. at minimum every two months

if not more frequently.

A weekly full backup combined with daily incremental backup is normally enough.
Keep a number of backups for a period of time, for instance, each weekly backup
stored for at least one month. This allows you to recover an older database in case of
emergencies, or if for some reason, you have corrupted backup files.

Apart from regular backup schedules, you might also need to backup your data
occasionally before making significant changes, for example, schema, software or
hardware changes. In conjunction with binary logging, you will then avoid data loss and
you can at least revert to the position just before the failed change (e.g an erroneous
drop table).

If using binary logs, we recommend you set expire_log_days=X+1 in my.cnf, where X
are the number of days between full backups.

You should also schedule for backup verification, to verify that backups are usable
and restorable. Once in a month, you may try restore any random backup from all
multiplexed devices (i.e., local server/external server/SAN/tape).

Backup Management

37

5.2. Backup Verification and Integrity
To verify that your backup has been successful, restore the backup data on a different
server and run the MySQL daemon (mysqld) on the new data directory. Nothing is
better than testing a restore, and it should be a periodic procedure. You should be able
to start mysqld without problems. Once you have mysqld running, you need to test
each table’s usability. You can then execute SHOW statements to verify the database
and table structures, and execute queries to further verify details of the database.

You may add other verification criterias to trigger alerts. For example, the size of the
backup file should be more than x GB (depends upon standard backup size you get).
An alarm is triggered if it is lesser than that. When copying or moving the backup
files from one location to another, checksum the file to verify its integrity. You can use
the md5sum command to calculate the checksum and compare before and after the
operation, for example:

There are also some tools available in the MySQL ecosystem to verify the integrity of a
backup, as shown in the next sections.

5.2.1. mysqlcheck
MySQL provides utility tools to check for database consistency and check for errors.
One of it is mysqlcheck, which uses the SQL statements CHECK TABLE, REPAIR TABLE,
ANALYZE TABLE, and OPTIMIZE TABLE in a convenient way for the user. It determines
which statements to use for the operation you want to perform, and then sends the
statement to the server to be executed. Mysqlcheck is also invoked by the mysql_
upgrade script to check tables and repair them if necessary.

It is sufficient to invoke the --analyze option when performing the check:

5.2.2. mysqldbcompare
MySQL provides a utility called mysqldbcompare, to compare the objects and data
from two databases to find differences. This tool is only available as part of mysql-
utilities package. It identifies objects having different definitions in the two databases
and presents them in a diff-style format. However, the data must not change during the
comparison as unexpected errors may then occur.

If you are using mysqldump to backup a single database in MySQL replication or Galera
Cluster with asynchronous slave, you can use one of the slave servers for backups and
also periodically test the restore. The process of testing can be done as per example

1	 ##	On	local	server
2	 $	md5sum	backup.sql
3	 71e41ff4ebf84db6f07eb73bddcd6073		backup.sql
4	 ##	Copy	to	storage	server
5	 $	scp	sbtest.sql	root@storage:/backups/dump/
6	 ##	On	storage	server
7	 $	md5sum	/backups/dump/backup.sql
8	 71e41ff4ebf84db6f07eb73bddcd6073		/backups/dump/backup.sql

1	 $	mysqlcheck	--analyze	--databases	db1	--user	root	--pass-
word

38

below:
1. Stop the slave process (so database does not get updated)
2. Run the backup command using mysqldump for the selected database
3. Create a new database for restore purpose, for example restore_db1
4. Restore the data from backup into restore_db1
5. Use mysqldbcompare to compare the two databases
6. Drop restore_db1 database
7. Start the slave process again

By running mysqldbcompare, you should see output similar as per below:

1	 $	mysqldbcompare	--server1=root:password@localhost	--diff-
type=sql	db1:restore_db1

2	 #	WARNING:	Using	a	password	on	the	command	line	interface	
can	be	insecure.

3	 #	server1	on	localhost:	...	connected.
4	 #	server2	on	localhost:	...	connected.
5	 #	Checking	databases	sbtest	on	server1	and	backup_test	on	

server2
6	 #
7	 #																																																			Defn				

Row					Data
8	 #	Type						Object	Name																													Diff				

Count			Check
9	 #	--

10	 #	TABLE					sbtest1																																	pass				

pass				-
11	 #											-	Compare	table	checksum																																

FAIL
12	 #											-	Find	row	differences																																		

pass
13	 #	TABLE					sbtest10																																pass				

pass				-
14	 #											-	Compare	table	checksum																																

FAIL
15	 #											-	Find	row	differences																																		

pass
16	 #	TABLE					sbtest9																																	pass				

pass				-
17	 #											-	Compare	table	checksum																																

FAIL
18	 #											-	Find	row	differences																																		

pass
19	
20	
21	 #	Databases	are	consistent.
22	 #
23	 #	...done

39

At the end, you can see the result whether the databases are consistent. At this point,
the backup is verified to be working and you can safely store it to an appropriate
backup location.

5.2.3. pt-table-checksum
Another way to verify if the backup is consistent is by setting up the replication and
running pt-table-checksum. This can be used to verify any type of backups, but before
setting up replication, the backup should be prepared and be able to run. This means
that incremental backups should be merged with full backups, encrypted backups
should be decrypted and so on. It performs an online replication consistency check by
executing checksum queries on the master, which produces different results on replicas/
slaves that are inconsistent with the master.

You can perform the validation process as follows:
1. Run pt-table-checksum on master to check slave consistency
2. Backup one of the slaves
3. Wipe the data off the slave
4. Perform restoration on the slave
5. Re-validate slave consistency using pt-table-checksum

Example output of the pt-table-checksum:

If all the values in the DIFFS column are 0, that means that the backup is consistent with
the current setup. At this point, the backup is verified to be working and you can safely
store it to an appropriate backup location.

1	 $./pt-table-checksum
2	 TS													ERRORS		DIFFS					ROWS		CHUNKS	SKIPPED				

TIME	TABLE
3	 04-30T11:31:50						0						0			633135							8							0			

5.400	exampledb.aka_name
4	 04-30T11:31:52						0						0			290859							1							0			

2.692	exampledb.aka_title
5	 Checksumming	exampledb.user_info:		16%	02:27	remain
6	 Checksumming	exampledb.user_info:		34%	01:58	remain
7	 Checksumming	exampledb.user_info:		50%	01:29	remain
8	 Checksumming	exampledb.user_info:		68%	00:56	remain
9	 Checksumming	exampledb.user_info:		86%	00:24	remain
10	 04-30T11:34:38						0						0	22187768					126							0	

165.216	exampledb.user_info
11	 04-30T11:38:09						0						0								0							1							0			

0.033	mysql.time_zone_name
12	 04-30T11:38:09						0						0								0							1							0			

0.052	mysql.time_zone_transition
13	 04-30T11:38:09						0						0								0							1							0			

0.054	mysql.time_zone_transition_type
14	 04-30T11:38:09						0						0								8							1							0			

0.064	mysql.user

40

5.3. Backup Availability
A local backup is performed on the same host where the MySQL/MariaDB server runs,
whereas a remote backup is executed from a different host. Mysqldump can perform a
backup against a local or remote MySQL server and the backup output is stored in the
location where the process is initiated. On the other hand, Percona Xtrabackup needs
to access the filesystem and MySQL data directory. So the backup has to be initiated
locally on the MySQL server, with options to store the backup locally or stream it over
the network to another host.

5.3.1. Onsite Storage
Onsite storage usually entails storing important data on a periodic basis on local
storage devices, such as hard drives, DVDs, magnetic tapes, or CDs. It has some
advantages over offsite storage, including:

• Immediate access to data.
• Less expensive.
• Internet access is not needed.

If the backup should be stored locally on the MySQL server, try to avoid using
compression since this process is CPU intensive and can directly impact the
performance of your MySQL server. However, some environments have a period of low
database traffic and using compression can save you a lot of space. It is a bit of tradeoff
of processing power over storage space.

5.3.2. Offsite Storage
Offsite storage has some advantages over onsite storage, including:

• Access to data from any location, via Internet or FTP
• Data will be preserved in case you lose your data center
• Backup data can be shared with a number of different remote locations.

The major bottleneck here however is the data transfer speed. Unless it operates on
a high speed LAN backbone, the remote backup can be ineffective as it is tied to the
maximum upstream speed of the network. To save bandwidth, one would compress the
backup on the MySQL server before transferring it over the network.

5.3.3. Hybrid Storage
With the booming public and private cloud storage industry, with options like Dropbox,
Google Drive and Amazon S3, we have a new category called hybrid storage. This
technology allows the files to be stored locally, with changes automatically synced to a
remote storage in the cloud.

This is handy in some cases where you can get the best of both worlds, onsite and
offsite. However, the bandwidth in data center is usually costly to support such seamless
integration. You do not want the syncing process to eat the allocated bandwidth and
compromise the reliability of your production database server. Security is also another
concern where you have to enforce encryption over the line to the public cloud.

A good use case of hybrid storage is to have a dedicated backup server, with a
dedicated bandwidth line to sync up backup files into the cloud.

41

5.4. Backup Housekeeping
To keep backup storage space at an optimum level, you should regularly delete
backups that are no longer needed for recovery. Ideally, a full backup with associated
incremental backups and binary logs can be purged after you exceed the expire_
log_days value. However, you have to ensure that your backup files are verified and
restorable before purging them. You can also use PURGE	BINARY	LOGS statement to
remove the older logs once they are copied:

Occasionally, for Percona Xtrabackup, one would decompress and prepare a backup in
the MySQL server after the recovery process has been carried out. The prepared data
could eat up significant disk space and this can lead to operating system instability.
A good approach for this is to perform this exercise (decompress and prepare) in a
“dump” directory, and schedule a garbage collector command or script to clear the data
on a daily basis.

5.5. Backup Failover
Backups are usually scheduled in non-peak hours, and maintenance activities might also
be scheduled during the same period. This can cause scheduled backup jobs to overlap
with some of these activities, therefore affecting database availability. In some scenarios,
the scheduled backup on a target host might be skipped if the target host is down, is
unreachable or under maintenance.

To overcome this, ensure you have a safeguard mechanism to check if the backup
process has completed correctly, or otherwise, move to the next available node for that
particular backup set. This requires some logic extension to the backup command or
script that you are using. It is also a good approach to use another independent server
(for example, monitoring server) to trigger the backup process on another server. You
can also review your backup schedule to avoid overlap with maintenance activities.

1	 mysql>	PURGE	BINARY	LOGS	TO	‘binlog.000006’;

42

Backup managers are third party tools to simplify the backup operation and
management. They do not add features to the current backup - they organize, optimize
and use what it is available at operating system or database level. Managing backups
can become complex when you have to deal with large datasets, growing database
workloads, or multiple servers.

ClusterControl is an agentless database automation tool from Severalnines. It helps
manage, monitor and deploy MySQL/MariaDB, MongoDB and PostgreSQL, therefore
reducing complexity for operations. ClusterControl backup management provides a
simplified and straightforward web interface, from which you can manage multiple
systems and clusters. This is to avoid dealing with the long list of command line
options when executing backups - offline or online, hot backup or cold backup, full
or incremental, mysqldump or Percona Xtrabackup, and so on. The command line
arguments for the respective methods are optimised based on the workloads, and
would comply to the MySQL backup best practices.

The main features are:
• Generate a mysqldump/Percona Xtrabackup backup immediately.
• Schedule mysqldump/Percona Xtrabackup operation.
• Backup failover - Performs backup on the next available node if the target node

is down or unreachable.
• Full, partial (selective databases), incremental backup (backup the deltas since

last backup).
• Adapts to the topology - If the MySQL server produces binary log, binlog file

and position is automatically captured.
• Centralized backup or on-site backup storage.
• Network and disk IOPS throttling.
• Restore from the created backup or backup created externally.
• Backup reports - Shows backup summary, status, size, location, target node and

database, error log (if failed).
• Daily/weekly/monthly operational reports on backup summary.
• Backup notifications via alarms and email.
• Manages incremental backups, and groups the combination of full and

incremental backups in a backup set.
• Check the backup destination free space prior to perform a backup.
• Auto-purge backup after exceeding the purge interval.

It is possible to easily specify the backup settings from ClusterControl.

ClusterControl as Backup
Manager

43

There are interesting features that are adapted to the database topology used. For
Galera clusters, ClusterControl can desync a node during backup, so it won’t affect
the running database cluster. It can also automatically failover the backup to the other
host, in case the primary backup host fails. Backup files can be stored locally on the
node where the backup is taken, or they can also be streamed to the controller node
and compressed on the fly. Incremental backups are grouped with the appropriate
full backup, into backup sets. This is a neat way to organize backups, and reduce the
complexity of the recovery process.

All incremental backups after a full backup will be part of the same backup set, as seen
in the screenshot below:

44

By clicking on the Restore button, you are two clicks away from a full restoration of the
completed backups. ClusterControl will automatically perform all the necessary backup
preparation processes for Percona Xtrabackup and do the final copy-back before re-
bootstrapping the cluster. You will end up with a running and fully restored cluster,
where you can immediately proceed to do point-in-time recovery using binary logs if
necessary.

ClusterControl also provides operational reports, for all database systems managed by
ClusterControl. The following screenshot is an example of the report:

It contains two sections and basically gives you a short summary of when the last
backup was created, if it completed successfully or failed. You can also check the list of
backups executed on the cluster with their state, type and size. This is as close you can
get to check that backups work correctly without running a full recovery test. However,
we definitely recommend that such tests are regularly performed.

45

Things fail. It is wise to take measures that prevent failures - redundant hardware,
mirrored storage, replication and clustering, failover technology and multi datacenter
architectures are some of them. These can minimize the need for a full recovery of your
data, but no amount of planning can prevent an unexpected failure. A sound backup
and recovery plan is your insurance policy, and one you probably need if you value your
data. The amount of data handled by a database server is also growing. Not too long
ago, it was common to talk in terms of tens or a few hundreds of gigabytes on a single
server. Now it is common with half a terabyte and upwards - on a single server. Business
are generating more data in general, and commodity servers nowadays have plenty
of RAM, CPU and SSD storage to handle higher data volumes. Therefore, an efficient
backup strategy is key to business continuity.

Conclusion

46

Severalnines provides automation and management software for database clusters. We
help companies deploy their databases in any environment, and manage all operational
aspects to achieve high-scale availability.

Severalnines’ products are used by developers and administrators of all skills levels
to provide the full ‘deploy, manage, monitor, scale’ database cycle, thus freeing them
from the complexity and learning curves that are typically associated with highly
available database clusters. The company has enabled over 8,000 deployments to date
via its popular ClusterControl solution. Currently counting BT, Orange, Cisco, CNRS,
Technicolour, AVG, Ping Identity and Paytrail as customers. Severalnines is a private
company headquartered in Stockholm, Sweden with offices in Singapore and Tokyo,
Japan. To see who is using Severalnines today visit, http://severalnines.com/customers.

About Severalnines

Deploy Manage Monitor Scale

http://severalnines.com/customers

47

Whitepapers

Management and Automation of Open Source
Databases
Proprietary databases have been around for decades with a rich
third party ecosystem of management tools. But what about
open source databases? This whitepaper discusses the various
aspects of open source database automation and management
as well as the tools available to efficiently run them.

Download here

A Guide to Efficient Database Infrastructure
Operations
Taking control of their data is every company’s number one job.
Database operations encompass a number of functions,
including the initial deployment of a solution, configuration
management, performance monitoring, SLA management,
backups, patches, version upgrades and scaling.
In this white paper, we will discuss the operational aspects of
running database infrastructures, and how companies can make
these more efficient.

Download here

MySQL Replication Blueprint
The MySQL Replication Blueprint whitepaper includes all aspects
of a Replication topology with the ins and outs of deployment,
setting up replication, monitoring, upgrades, performing backups
and managing high availability using proxies.

Download here

Related Resources from
Severalnines

http://severalnines.com/resources/whitepapers#download_whitepaper/4506
http://severalnines.com/resources/whitepapers#download_whitepaper/536
http://severalnines.com/resources/whitepapers#download_whitepaper/4681

48

© 2016 Severalnines AB. All rights reserved. Severalnines and the Severalnines logo(s) are
trademarks of Severalnines AB. Other names may be trademarks of their respective owners.

Deploy Manage

Monitor Scale

	Introduction
	Impact of Storage Engine on Backup Procedure
	MyISAM/Aria
	InnoDB/XtraDB
	Transactions
	Crash Recovery
	MVCC

	MEMORY
	MyISAM, InnoDB and MEMORY Comparison

	Backup Tools
	mysqldump
	How does it work?
	Non-transactional Tables
	Transactional Tables
	Flush Binary Logs

	Advantages
	Disadvantages

	Percona Xtrabackup
	How it works?
	Advantages
	Disadvantages

	Binary Log
	How does it work?
	Advantages
	Disadvantages
	Restoring with Binary Logs
	Full Restore
	Partial Restore

	Performing Backup Efficiently
	Backup Credentials
	Storage Engine
	Dataset Size
	Recovery Objective
	High Availability Setup
	Delta Size (changes between two backup points)
	Backup Size
	Encryption
	Dedicated Backup Server

	Backup Management
	Backup Scheduling
	Backup Verification and Integrity
	mysqlcheck
	mysqldbcompare
	pt-table-checksum

	Backup Availability
	Onsite Storage
	Offsite Storage
	Hybrid Storage

	Backup Housekeeping
	Backup Failover

	ClusterControl as Backup Manager
	Conclusion
	About Severalnines
	Related Resources from Severalnines

