

¥ Table of Contents

1. Introduction

2. What is MySQL Replication?

2.1. Replication Scheme
2.1.1. Asynchronous Replication
2.1.2. Semi-Synchronous Replication

2.2. Global Transaction Identifier (GTID)
2.2.1. Replication in MySQL 5.5 and Earlier
2.2.2. How GTID Solves the Problem
2.2.3. MariaDB GTID vs MySQL GTID

2.3. Multi-Threaded Slave

2.4. Crash-Safe Slave

2.5. Group Commit

3. Topology for MySQL Replication
3.1. Master with Slaves (Single Replication)
3.2. Master with Relay Slaves (Chain Replication)

3.3. Master with Active Master (Circular Replication)

3.4. Master with Backup Master (Multiple Replication)

3.5. Multiple Masters to Single Slave (Multi-Source Replication)
3.6. Galera with Replication Slave (Hybrid Replication)

4. Deploying a MySQL Replication Setup
4.1. General and SSH Settings
4.2. Define the MySQL Servers
4.3. Define Topology
4.4. Scaling Out

5. Connecting Application to the Replication Setup
5.1. Application Connector
5.2. Fabric-Aware Connector
5.3. Reverse Proxy/Load Balancer
5.3.1. MariaDB MaxScale
5.3.2. ProxySQL
5.3.3. HAProxy (Master-Slave Replication)

6. Failover with ClusterControl
6.1. Automatic Failover of Master
6.1.1. Whitelists and Blacklists
6.2. Manual Failover of Master
6.3. Failure of a Slave
6.4. Pre and Post-Failover Scripts
6.4.1. When Hooks Can Be Useful?
6.4.1.1. Service Discovery
6.4.1.2. Proxy Reconfiguration
6.4.1.3. Additional Logging

N

O O 0O 0000 ~NJOYOYOY UTuUl U1 U

nin3s

¥ Table of Contents

7. Operations - Managing Your MySQL Replication Setup
7.1. Show Replication Status
7.2. Start/Stop Replication
7.3. Promote Slave
7.4. Rebuild Replication Slave
7.5. Backup
7.6. Restore
7.7. Software Upgrade
7.8. Configuration Changes
7.9. Schema Changes
7.10. Topology Changes

8. Issues and Troubleshooting
8.1. Replication Status
8.2. Replication Lag
8.3. Data Drifting
8.4. Errant Transaction
8.5. Corrupted Slave
8.6. Recommendations

About ClusterControl
About Severalnines

Related Resources

36
36
36
37
37
39
40
44
45
46
47

48
48
50
51
51
52
52

54
54
55

nin3s

m Introduction

MySQL Replication is probably the most popular high availability solution for MySQL,
and widely used by top web properties like Twitter and Facebook. Although easy to set
up, ongoing maintenance like software upgrades, schema changes, topology changes,
failover and recovery have always been tricky. At least until MySQL 5.6.

Fortunately, MySQL 5.6 brought a number of significant enhancements to Replication,
including Global Transaction IDs, event checksums, multi-threaded slaves and crash-safe
slaves/masters. Replication got even better with MySQL 5.7 and MySQL 8.0.

This tutorial covers basic information about MySQL Replication, with information about
the features introduced in 5.6, 5.7 and 8.0. At the end, you should be able to answer
questions like:

* How do | use GTID with replication?
« How do | recover my setup if my master fails?
« How do | upgrade the master and slave servers without downtime?
« How do | change my database schema across all servers?
« How do | handle slave lag?
e etc
There is also a more hands-on, practical section on how to quickly deploy and manage

a replication setup using ClusterControl. You would need 4 hosts/VMs if you plan on
doing this.

nin3s

http://severalnines.com/getting-started

iI What is MySQL Replication?

Replication enables data from one MySQL server (the master) to be replicated to one or
more MySQL servers (the slaves). MySQL Replication is very easy to setup, and is used
to scale out read workloads, provide high availability and geographic redundancy, and
offload backups and analytic jobs.

2.1. Replication Scheme

There are currently two replication schemes supported by MySQL Replication:
« Asynchronous replication
« Semi-synchronous replication

There is no restriction in mixing replication schemes in the same topology. Both have
their pros and cons. At the time of writing, there is no fully-synchronous solution for
MySQL replication.

2.1.1. Asynchronous Replication

MySQL Replication by default is asynchronous. This is the oldest, most popular and
widely deployed replication scheme. With asynchronous replication, the master writes
events to its binary log and slaves request them when they are ready. There is no
guarantee that any event will ever reach any slave. It's a loosely coupled master-slave
relationship, where:

« Master does not wait for Slave.
« Slave determines how much to read and from which point in the binary log.
« Slave can be arbitrarily behind master in reading or applying changes.

If the master crashes, transactions that it has committed might not have been
transmitted to any slave. Consequently, failover from master to slave in this case may
result in failover to a server that is missing transactions relative to the master.

Asynchronous replication provides lower write latency, since a write is acknowledged
locally by a master before being written to slaves. It is great for read scaling as adding
more replicas does not impact replication latency. Good use cases for asynchronous
replication include deployment of read replicas for read scaling, live backup copy for
disaster recovery and analytics/reporting.

2.1.2. Semi-Synchronous Replication

MySQL also supports semi-synchronous replication, where the master does not confirm
transactions to the client until at least one slave has copied the change to its relay log,
and flushed it to disk. To enable semi-synchronous replication, extra steps for plugin
installation are required, and must be enabled on the designated MySQL master and
slave.

nin3s

Semi-synchronous seems to be good and practical solution for many cases where
high availability and no data-loss is important. But you should consider that semi-
synchronous has a performance impact due to the additional round trip and does

not provide strong guarantees against data loss. When a commit returns successfully,
it is known that the data exists in at least two places (on the master and at least

one slave). If the master commits but a crash occurs while the master is waiting for
acknowledgment from a slave, it is possible that the transaction may not have reached
any slave. This is not that big of an issue as the commit will not be returned to the
application in this case. It is the application’s task to retry the transaction in the future.
What is important to keep in mind is that, when the master failed and a slave has been
promoted, the old master cannot join the replication chain. Under some circumstances
this may lead to conflicts with data on the slaves (when master crashed after the slave
received the binary log event but before master got the acknowledgement from the
slave). Thus the only safe way is to discard the data on the old master and provision it
from scratch using the data from the newly promoted master.

A good use case for semi-synchronous replication is a backup master to reduce the
impact of a master failure by minimizing the risk of data loss. We'll explain this in detail
under ‘Chapter 3 - Topology for MySQL Replication’.

2.2. Global Transaction Identifier (GTID)

Global Transaction Identifiers (GTID) was introduced in MySQL 5.6. GTID is a unique
identifier created and associated with each transaction committed on the server of
origin (master). This identifier is unique not only to the server on which it originated, but
is unique across all servers in a given replication setup. There is a one-to-one mapping
between all transactions and all GTIDs. Note that MySQL and MariaDB have different
GTID implementation, as we'll explain further down.

2.2.1. Replication in MySQL 5.5 and Earlier

In MySQL 5.5, resuming a broken replication setup required you to determine the last
binary log file and position, which are distinct on nodes if binary logging is enabled. If
the MySQL master fails, replication breaks and the slave will need to switch to another
master. You will need to promote the most updated slave node to be a master, and
manually determine a new binary log file and position of the last transaction executed
by the slave. Another option is to dump the data from the new master node, restore it
on slave and start replication with the new master node. These options are of course
doable, but not very practical in production.

2.2.2. How GTID Solves the Problem

GTID (Global Transaction Identifier) provides a better transactions mapping across
nodes. In MySQL 5.5. or before, Replication works in such a way that all nodes will
generate different binlog files. Binlog events are the same and in the same order, but
binlog file offsets may vary. With GTID, slaves can see a unique transaction coming in
from several masters and this can easily be mapped into the slave execution list if it
needs to restart or resume replication.

Every transaction has a unique identifier which identifies it in the same way on every
server. It's not important anymore in which binary log position a transaction was

nin3s

recorded, all you need to know is the GTID: '966073f3-b6a4-11e4-af2c-080027880ca6:4".
GTID is built from two parts - the unique identifier of a server where a transaction was
first executed, and a sequence number. In the above example, we can see that the
transaction was executed by the server with server_uuid of '966073f3-b6a4-11e4-af2c-
080027880ca6’ and it's 4th transaction executed there. This information is enough to
perform complex topology changes - MySQL knows which transactions have been
executed and therefore it knows which transactions need to be executed next. Forget
about binary logs, it's now all in the GTID.

All necessary information for synchronizing with the master can be obtained directly
from the replication stream. When you are using GTIDs for replication, you do not need
to include MASTER_LOG_FILE or MASTER_LOG_POS options in the CHANGE MASTER

TO statement; instead, it is necessary only to enable the MASTER_AUTO_POSITION
option.

2.2.3. MariaDB GTID vs MySQL GTID

MariaDB has a different implementation of Global Transaction ID (GTID), and is enabled
by default starting from MariaDB 10.0.2. A MariaDB GTID consists of three separated
values:

« Domain ID - Replication domain. A replication domain is a server or group of
servers that generate a single, strictly ordered replication stream.

« Server ID - Server identifier number to enable master and slave servers to
identify themselves uniquely.

« Event Group ID - A sequence number for a collection of events that are

always applied as a unit. Every binlog event group (eg. transaction, DDL, non-
transactional statement) is annotated with its GTID.

The figure below illustrates the differences between the two GTIDs:

a| a B Server UUID uTrjnsactiorLlD
20 4f5d12ed-df65-11e3-b295-6067c090eb04: 14623
ae [:‘?LinlfK Server D gKEventGrDupng

50 1-201-1434

In MariaDB, there is no special configuration needed on the server to start using GTID.
Some of MariaDB GTID advantages:

+ Itis easy to identify which server or domain the event group is originating from.
* You do not necessarily need to turn on binary logging on slaves.
It allows multi-source replication with distinct domain ID.

« Enabling GTID features is dynamic, you don't have to restart the MariaDB
server.

« The state of the slave is recorded in a crash-safe way.

nin3s

Despite the differences between these two, it is still possible to replicate from MySQL
5.6 to MariaDB 10.0 or vice versa. However, you will not be able to use the GTID features
to automatically pick the correct binlog position when switching to a new master. Old-
style MySQL replication will work.

Further reading can be found at MariaDB GTID and MySQL GTID documentation page.

2.3. Multi-Threaded Slave

MySQL 5.6 allows you to execute replicated events in parallel as long as data is split
across several databases. This feature is named "Multi-Threaded Slave” (MTS) and it is
easy to enable by setting slave_parallel_workers to a > 1 value. In MySQL 5.7, it can now
be used for any workload, including intra-schema, unlike 5.6 where it could only be
applied with one thread per schema. MySQL 8.0 introduced write-sets, which allows for
even better parallelization of applying binary log events.

2.4. Crash-Safe Slave

Crash safe means even if a slave mysqld/OS crash, you can recover the slave and
continue replication without restoring MySQL databases onto the slave. To make crash
safe slave work, you have to use InnoDB storage engine only, and in 5.6 you need to set
relay_log_info_repository=TABLE and relay_log_recovery=1.

Durability (sync_binlog = 1and innodb_flush_log_at_trx_commit = 1) is NOT required.

2.5. Group Commit

InnoDB, like any other ACID-compliant database engine, flushes the redo log of a
transaction before it is committed. InnoDB uses group commit functionality to group
multiple such flush requests together to avoid one flush for each commit. With group
commit, InnoDB issues a single write to the log file to perform the commit action for
multiple user transactions that commit at about the same time, significantly improving
throughput.

nin3s

https://mariadb.com/kb/en/mariadb/gtid/
https://dev.mysql.com/doc/refman/en/replication-gtids-concepts.html

'I'Il Topology for MySQL
Replication
3.1. Master with Slaves (Single Replication)

Vv

Master

READ REPLICAS

—HEE

Slave Slave Slave
(read only) {read only) (read only)

This the most straightforward MySQL replication topology. One master receives
writes, one or more slaves replicate from the same master via asynchronous or semi-
synchronous replication. If the designated master goes down, the most up-to-date slave

must be promoted as new master. The remaining slaves resume the replication from the
new master.

severalnings

3.2. Master with Relay Slaves (Chain Replication)

=[S
=

(i

Master

Slave Relay
(read only)

READ REPLICAS

LD

Slave Slave Slave
{read only) (read only) {read only)

This setup use an intermediate master to act as a relay to the other slaves in the
replication chain. When there are many slaves connected to a master, the network
interface of the master can get overloaded. This topology allows the read replicas to
pull the replication stream from the relay server to offload the master server. On the
slave relay server, binary logging and log_slave_updates must be enabled, whereby
updates received by the slave server from the master server are logged to the slave’s
own binary log.

Using slave relay has its problems:
* log_slave_updates has some performance penalty.
« Replication lag on the slave relay server will generate delay on all of its slaves.

« Rogue transactions on the slave relay server will infect of all its slaves.

« If a slave relay server fails and you are not using GTID, all of its slaves stop
replicating and they need to be reinitialized.

nin3s 10

3.3. Master with Active Master (Circular Replication)

v R

Master Master

Also known as ring topology, this setup requires two or more MySQL servers which act
as master. All masters receive writes and generate binlogs with a few caveats:

« You need to set auto-increment offset on each server to avoid primary key
collisions.

* There is no conflict resolution.

« MySQL Replication currently does not support any locking protocol between
master and slave to guarantee the atomicity of a distributed update across two
different servers.

« Common practice is to only write to one master and the other master acts as a
hot-standby node. Still, if you have slaves below that tier, you have to switch to
the new master manually if the designated master fails.

You can deploy this topology with ClusterControl 1.4 and later. Previously, ClusterControl
would raise an alarm because two or more masters were currently running. One master
will be configured as read-only while the other is writable. However, locking and conflict
resolution need to be handled by the application itself. ClusterControl does not support
two writable masters in a replication setup, one of those two masters has to be in read_
only mode.

3.4. Master with Backup Master (Multiple Replication)

The master pushes changes to a backup master and to one or more slaves. Semi-
synchronous replication is used between master and backup master. Master sends
update to backup master and waits with transaction commit. Backup master gets
update, writes to its relay log and flushes to disk. Backup master then acknowledges
receipt of the transaction to the master, and proceeds with transaction commit. Semi-
sync replication has a performance impact, but the risk for data loss is minimized.

nin3s

1

REDUNDANT MASTER

SEN=

Master Backup Master
(read only)

READ REPLICAS

—EE

Slave Slave Slave
(read only) (read only) (read only)

This topology works well when performing master failover in case the master goes
down. The backup master acts as a warm-standby server as it has the highest
probability of having up-to-date data when compared to other slaves.

3.5. Multiple Masters to Single Slave (Multi-Source
Replication)

Multi-Source Replication enables a replication slave to receive transactions from
multiple sources simultaneously. Multi-source replication can be used to backup

multiple servers to a single server, to merge table shards, and consolidate data from
multiple servers to a single server.

severalnings

12

ol
«—

LD

i

Master

Master

Master

(0=

L

Slave

MySQL and MariaDB have different implementations of multi-source replication,
where MariaDB must have GTID with gtid-domain-id configured to distinguish the
originating transactions while MySQL uses a separate replication channel for each
master the slave replicates from. In MySQL, masters in a multi-source replication
topology can be configured to use either global transaction identifier (GTID) based
replication, or binary log position-based replication.

More on MariaDB multi source replication can be found in this blog post. For MySQL,
please refer to the MySOL documentation.

3.6. Galera with Replication Slave (Hybrid Replication)

Hybrid replication is a combination of MySQL asynchronous replication and virtually
synchronous replication provided by Galera. The deployment is now simplified with the
implementation of GTID in MySQL replication, where setting up and performing master
failover has become a straightforward process on the slave side.

nin3s 3

http://severalnines.com/blog/multi-source-replication-mariadb-galera-cluster
https://dev.mysql.com/doc/refman/5.7/en/replication-multi-source.html

R v R

] L) amma

I (S B
e —— s —— s — E
e S Ve e
e

Master Master Master
GALERA REPLICATION —"
Slave

Galera cluster performance is as fast as the slowest node. Having an asynchronous
replication slave can minimize the impact on the cluster if you send long-running
reporting/OLAP type queries to the slave, or if you perform heavy jobs that require
locks like mysgldump. The slave can also serve as a live backup for onsite and offsite
disaster recovery.

Hybrid replication is supported by ClusterControl and you can deploy it directly from
the ClusterControl Ul. For more information on how to do this, please read the blog
posts - Hybrid replication with MySQL 5.6 and Hybrid replication with MariaDB 10.x.

nin3s

14

http://severalnines.com/blog/deploy-asynchronous-slave-galera-mysql-easy-way
http://severalnines.com/blog/deploy-asynchronous-replication-slave-mariadb-galera-cluster-gtid-clustercontrol

Deploying a MySQL
Replication Setup

We'll now deploy a MySQL replication topology consisting of one master, one backup
master (read-only) and two slaves, using ClusterControl. Our architecture is illustrated
below:

MASTERS _
E - TR : {{}}
= Semisynchronous 1111/ . :
.e Pril]]ﬂ!!MaSter.{readmrite‘l""""E".mmm“" -
10.0.0.201 '
111/ N
Standby Master (read-only) “ ClusterControl
10.0.0.202 10.0.0.200
. SLAVES e
/1717 /1777
Slave1 Slave2
10.0.0.203 10.0.0.204

Install ClusterControl by following the instructions on the Getting Started page. Do
not forget to setup passwordless SSH from ClusterControl to all nodes (including
the ClusterControl node itself). We are going to use root user for deployment. On
ClusterControl node, run:

1 $ ssh-keygen -t rsa

2 $ ssh-copy-id 10.0.0.200 # clustercontrol
3 $ ssh-copy-id 10.0.0.201 # master

4 $ ssh-copy-id 10.0.0.202 # backup-master
5 $ ssh-copy-id 10.0.0.203 # slavel

6 $ ssh-copy-id 10.0.0.204 # slave2

nin3s

http://severalnines.com/getting-started
http://severalnines.com/getting-started

Open the ClusterControl Ul, go to the ‘Create Database Node’ and open the ‘MySQL
Replication’ tab. In the dialog, there are 3 tabs to be filled up, as shown in the following
screenshots.

4.1. General and SSH Settings

Deploy Database Cluster
MySQL MySQL MySQL Cluster MySQL Groub o MongoDB MongoDB PostgreSQL
Replication Galera (NDB) Replication ReplicaSet Shards

(T\J General & SSH Settings

SSH User @ SSH Key Path @ Sudo Password @

ubuntu /home/ubuntu/.ssh/id_rsa | ™ @
SSH Port @

22
Cluster Name @

x l Install Software » Bl Disable Firewall? x Disable AppArmor/SELinux?

d minimal VMs. Exis’ ved if required. New packages will be installed and existing

Use

1 be uninstalled when p ning the node with reqt

Back

Under “General & SSH Settings”, specify the required information:

« SSH User - Specify the SSH user the ClusterControl will use to connect to the
target host.

« SSH Key Path - Passwordless SSH requires an SSH key. Specify the physical path
to the key file here.

« Sudo Password - Sudo password if the sudo user use password to escalate
privileges. Otherwise, leave it blank.

« SSH Port Number - Self-explanatory. Default is 22.

» Cluster Name - Cluster name after deployed by ClusterControl.
Keep the checkboxes as default so ClusterControl installs the software and configures
the security options accordingly. If you would like to keep the firewall settings, uncheck

the “Disable Firewall” however make sure MySQL related ports are opened before the
deployment begins, as shown in this documentation page.

nin3s

16

https://severalnines.com/docs/requirements.html#firewall-and-security-groups

4.2. Define the MySQL Servers

Deploy Database Cluster
MySQL MySQL MySQL Cluster MySQL Groub - MongoDB MongoDB PostgreSQL
Replication Galera (NDB) Replication ReplicaSet Shards
@ General & Se (—2-) Define MySQL Servers 3 Y Define Te pology
ST i
Vendor @ Version @ Server Data Directory (]
Percona | MariaDB | Oracle 57 56

/var/lib/mysql

Server Port @ Configuration Template Li] Admin/Root Password @
3306 my.cnf.repl57 v 1 5% @
Repository
Use Vendor Repositories v

up and use the vendor's repositories - learn more.

Back

Move on the next tab, defined the MySQL Servers installation and configuration
options:

» Vendor - Currently supported vendor is Percona Server, MariaDB and Oracle.

« Version - MySQL major version. Version 5.7 (Oracle/Percona) or 10.3 (MariaDB)
is recommended.

« Server Data Directory - The physical location of MySQL data directory. Default
is /var/lib/mysql.

« Server Port - MySQL server port. Default is 3306.

« My.cnf Template - MySQL configuration template. Leave it empty to use
the default template located under /usr/share/cmon/templates.
For MySQL 5.7, ClusterControl will use my.cnf.repl57 for MySQL 5.7,
my.cnf.gtid_replication for MySQL 5.6 and my.cnf.replication for
MySQL 5.5.

« Root Password - MySQL root password. ClusterControl will set this up for you.

« Repository - Choose the default value is recommended, unless if you want to
use existing repositories on the database nodes. You can also choose “Create
New Repository” to create and mirror the current database vendor's repository
and then deploy using the local mirrored repository.

Replication user and password will be generated automatically by ClusterControl.
You can retrieve them later inside the generated CMON configuration file for the
corresponding cluster.

nin3s

17

4.3. Define Topology

Here you can define what kind of MySQL Replication topology you want. The interface
allows a number of replication topologies to be deployed like multi master, backup
master and chain replication. Please refer to the Topology for MySQL Replication

features for more details.
Deploy Database Cluster

MySQL MySQL MySQL Cluster
Replication Galera (NDB)

Master A - IP/Hostname

MongoDB MongoDB
ReplicaSet Shards

e
('3") Define Topology
b

~

Master B - IP/Hostname

PostgreSQL

@ 10.0.0.201 @ 10.0.0.202 . e
B e o f e v
-- G
0 10.0.0.203 ’ Add slaves to master B
Select or enter a Data IP ~
® 10.0.0.204 - #
L

Add slaves to master A

=

@

Back

« IP/Hostname - Specify the IP address or hostname of the target hosts. In this
dialog, you can define the topology of the standard master-slave or multi-
master replication. For multi-master replication, Master A will be the writer
while Master B will be started as read-only. ClusterControl must able to reach
the specified server through passwordless SSH. If ClusterControl won't be able
to connect to the host, an error will be shown here pointing towards the root
cause.

After we have filled in the required information, click on '‘Deploy’ to start the
deployment. ClusterControl will deploy the replication cluster according to the
topology. Starting from ClusterControl v1.4, new MySQL Replication deployment will
be configured with semi-synchronous replication scheme to reduce the chance of data
loss. Details on this scheme is explained in this chapter, What is MySQL Replication.

You can monitor the deployment progress from the Activity (top menu) under Jobs
tab. Pick the “Create Cluster” and click “Full Job Details” dialog when you click on the
spinning arrow icon on the top menu:

nin3s

Full Job Details

[12:22:09]:10.0.0.201:
[12:22:09]:10.0.0.201:
[12:22:09]:10.0.0.201:
[12:22:09]:10.0.0.201:
[12:22:09]:10.0.0.201:
[12:22:09]:10.0.0.201:
[12:22:08]:10.0.0.201:
[12:22:08]:10.0.0.201:
[12:22:08]:10.0.0.201:
[12:22:08]:10.0.0.201:
[12:22:08]:10.0.0.201:

Proceeding.
Waiting for dpkg lock.
Installing helper packages.

Setting vm.swappiness = 1.

Tuning OS parameters.
Flushing iptables.
Disabling ufw.
Checking firewall.
Type is 'debian’.
Release is 'xenial’.

Vendor is 'ubuntu'.

[12:22:08]:10.0.0.201: Checking SELinux status (enabled = false).
[12:22:07]:10.0.0.201: Check and disable AppArmor.

[12:22:07]:Setting up server 10.0.0.201:3306.

[12:22:07]:Found replication link 3: 10.0.0.202 -> 10.0.0.201.
[12:22:07]:Found replication link 2: 10.0.0.201 -> 10.0.0.202.
[12:22:07]:Found replication link 1: 10.0.0.201 -> 10.0.0.204.
[12:22:07]:Found replication link 0: 10.0.0.201 -> 10.0.0.203.
[12:22:07]:10.0.0.202:3306: Checking if host already exists in another cluster.
[12:22:07]:10.0.0.204:3306: Checking if host already exists in another cluster.
[12:22:07]:10.0.0.203:3306: Checking if host already exists in another cluster.
[12:22:07]:10.0.0.201:3306: Checking if host already exists in another cluster.
[12:22:07]:All 4 hosts are accessible by SSH.

[12:22:07]:Using sudo password for further communication.
[12:22:07]:10.0.0.202: Access with ssh/sudo granted.

[12:22:06]:10.0.0.204: Access with ssh/sudo granted.

[12:22:06]:10.0.0.203: Access with ssh/sudo granted.

[12:22:06]:10.0.0.201: Access with ssh/sudo granted.

[12:22:06]:Checking ssh/sudo on 4 hosts.

[12:22:06]:Verifying job parameters.

LAALARALALALLULLLLLLNL et At iss

ClusterControl performs the following tasks:

1. Verifies SSH connectivity.
Installs the specified MySQL Server.
Creates datadir and installs system tables.
Creates/grants the mysql user for MySQL Server.
Grants CMON user from the ClusterControl server.
Configures replication role for MySQL (master/slave).

N o s W

Verifies the deployment.
8. Registers the node with the ClusterControl server.

The MySQL Replication cluster is now deployed.

nin3s

4.4. Scaling Out

Using replication for scale-out works best in an environment where you have a high
number of reads and low number of writes/updates. Web applications tend to be more
read-intensive than write-intensive. Read requests can be load-balanced across more
slaves.

To scale out by adding more read copies, go to ClusterControl > select the database

cluster > Actions > Add Node > Create and add a new DB Node and enter the relevant
information for the slave:

Add Replication Slave

New Replication Slave Existing Replication Slave

Attach Replication Slave to Configuration Template 0
10.0.0.202:3306 (Multi-Master) - my.cnf.repl57 v
Slave Hostname / IP
10.0.0.205 © Set Data Replication Traffic Hostname / IP
Port
| 3306

® Install Database Software Include in LoadBalancer set(if exists)

Disable Firewall? x Disable SELinux/AppArmor?

:
Do you want to delay the slave? >_' Rebuild from Backup (0 PITR compatible backups)

i o The node must be up and running and allow the "cmon® user to connect from the controller, with at least SELECT,
PROCESS, SUPER, REPLICATION CLIENT, SHOW DATABASES, RELOAD privileges on all databases. For complete
management functionality ALL PRIVILEGES WITH GRANT OPTION is needed.

Cancel

ClusterControl supports adding a replication chain under any of the running slaves
thanks to the GTID implementation. A big advantage of chaining replication is that it
will not add overhead to the master server. You can decide whether the slave has lower
priority so it can be under a specific slave. In this example, we are going to add a new
server as slave (10.0.0.205) replicating from one of the available slaves (10.0.0.202).
There are also options to include the node as part of the load balancing set or you can
configure it as a delayed slave. You can also use one of the backups to provision this
new slave instead of copying the data directly from its master.

Click '"Add Node'. Monitor the progress at ClusterControl > Activity > Jobs > choose the

‘Adding a Replication Slave’job > Full Job Details and you should see something like
below:

nin3s

20

Full Job Details

—_—
©

—_
—

v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
-

ClusterControl performs the following tasks when creating a new slave:
1.

2.
3.
4.
5.
6.
7.
8.
9.

It Copy to clipboard

[10:21:39]:10.0.0.205:3306: [mysql] Pulling '/etc/mysgl/my.cnf'.
[10:21:39]:10.0.0.202:3306: [mysql] Pulling */etc/mysqgl/my.cnf'.
[10:21:38]:10.0.0.204:3306: [mysql] Pulling ‘/etc/mysgl/my.cnf'.
[10:21:38]:10.0.0.203:3306: [mysql] Pulling ‘/etc/mysal/my.cnf'.
[10:21:38]:10.0.0.201:3306: [mysql] Pulling ‘/etc/mysgl/my.cnf'.
[10:21:37]:10.0.0.205:3306: Registering node as a MySQL server (role: 'slave’)
[10:21:37]:10.0.0.205:3306: Starting replication 10.0.0.202:3306 -> 10.0.0.205:3306, completed OK.
[10:21:37]:10.0.0.205:3306: Started slave successfully.
[10:21:37]:10.0.0.205:3306: Collecting replication statistics.
[10:21:36]:10.0.0.205:3306: Starting slave.

[10:21:36]:10.0.0.205:3306: Changed master to 10.0.0.202:3306
[10:21:36]:10.0.0.205:3306: Changing master to 10.0.0.202:3306.
[10:21:36]:10.0.0.205:3306: Command 'RESET SLAVE' succeeded.
[10:21:36]:10.0.0.205:3306: Executing 'RESET SLAVE'.
[10:21:36]:10.0.0.205:3306: Successfully stopped slave.
[10:21:36]:10.0.0.205:3306: Stopping slave.

[10:21:36]:Writing file '10.0.0.205:/ete/mysql/secrets-backup.cnf'.
[10:21:35]:Writing file '10.0.0.205:/etc/mysql/my.cnf'.

[10:21:34]:Writing file '10.0.0.205:/etc/mysql/secrets-backup.cnf'.
[10:21:33]:Writing file '10.0.0.205:/ete/mysql/my.cnf'.
[10:21:33]:10.0.0.205:3308: Setting up semi-sync replication master options.
[10:21:33]:Writing file '10.0.0.205:/etc/mysql/secrets-backup.cnf'.
[10:21:32]:Writing file '10.0.0.205:/etc/mysgl/my.cnf'.
[10:21:31]:10.0.0.205:3306: Setting up semi-sync replication slave options.
[10:21:31]:10.0.0.205:3306: binlog_pos = 154

[10:21:31]:10.0.0.205:3306: binlog_file = binlog.000001

[10:21:31]:Starting replication 10.0.0.202:3306 -> 10.0.0.205:3308
[10:21:31]:10.0.0.205:3306: Responded to 'ping'.

F4MA4.247.10 0 N 205 All Aracaceae etannacd

Verifies SSH connectivity.

Installs the same MySQL Server major version as the master from repository.
Creates datadir and installs system tables.

Creates/grants the mysql user for MySQL Server.

Grants CMON user from the ClusterControl server.

Stages the data on slave from the selected master.

Configures replication role for MySQL slave with GTID.

Starts the replication.

Verifies the deployment.

Registers the node under the corresponding “cluster ID" in the ClusterControl
server.

Updating the balancing set on load balancer.

nin3s 21

We can see from the status that the replication between 10.0.0.202 and slave? is started
and the deployment status returned “completed OK". At this point, slave3 is replicating
from slave2 and our architecture is now looking like this:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

MASTERS

e
Jr—
e

/7717

Standby Master (read-only)

10.0.0.202

Semisynchronous

/1717

/1717

.

Slave3

10.0.0.205

Slave1

/1777

....................

10.0.0.203

M

......

__________

{J

-

/1717

Slave2
10.0.0.204

i\
\\|//

e

/117

d " ClusterControl
10.0.0.200

At the end of it, you will see the summary of the replication from the Overview page.

B Custons

Haster Hodos [Hultl Master]

ow . s Oy Sorver 3
€ Opombonal Reporia
+ raas Hae = Wettatse.
O
B Eral Noshcations
¥ 1002 Node a Rend Oaty. 5
e Integrasons Osa.
Lant updated. M 14, 3008 L2:17:00
& roy

& user Manageman

% Support Forum

e o Feac Coly.

o W00

Bss

v sonmg
a £

Lt upciated. Mar 14, 2019 12:17:09
Slave Nodes.

L Pt Oy

o 003

[a T8

¥ 100204
BYsse

o 130030

[a B8

Lt upciated. Mar 14, 3018 L0009

Expouted G ot

Loacm 1/6/ 15
042/ 0277014

Hea s (e

.18 4B/ T30 K8

i Fostson
Rarkon OO0 1
kg DOOOOT £
Flaac Mastue Lng. o Wit Lig
Mamerlogie |
g H00001 154 “
g 0000 s ™
Log e ::quwm E"::'IMW
g 00000 e 154
ik 20603 1 15
ik 006031 1 18
i Pl / st Dk Virites [ s
meas8 WATHE

y 8 3 +
Acwty Deply Impot  Glooal Setngs  Logoat
© Reben
eiog do ot kg o G
C haten -
Fistiaread Gted St Exmcyted Geus Sot
C Reban -
Fintsansad Gt St Exacyted Ot Bt
© Ak -
Uptire Las: Undited
27 s 43 Secemcn  few secenes aga

22



You can also confirm the topology in the Topology View:

ClusterControl Bl R

BB clusters

@ Oporationsl Roperta

= Overvies th Rodes
& Emal Notcations

e inigeatians cluster_1 Topology

8 Key Management o

& User Managernent

& Cusrboans

Chastor_1 [ACTIVE)
SN REPLCATION Custor 1 Auic Recovery: Custor (7 Hode ) CONTROLLER » MASTER: ' v SLAVE v v v

O GueryMonsor b Pertemance & Backep

ServeriD 1

@ 10.0.0:200:3306 ulti-Master] | writabin

ol 0

S 16,02.2003308 (S} | resckurdy

Master Log il birog 000003
FRead Master Log Pos 154

oo

) 10:0 0 2043306 (S | reacionty [

Lagis) O

Master Lesg il Binkog 000001
Flead Master Log Pos 154

We have now scaled out our MySQL Replication

A Manage O Security

setup.

= aners BT

“ vogs HENR

& five us foedback

severalnings

23



m Connecting Application to the
! o
Replication Setup

By now, we should have a MySQL replication setup ready. The next thing is to import
an existing database or to create a brand new database for a new application. When
designing or deploying your application, just bear in mind that all write operations
(statement/query that change the state of a database) must be executed ONLY on the
master server. Example of write operations are statements that contain the following:

« DDL - CREATE, ALTER, DROP, TRUNCATE, RENAME
+ DML - INSERT, DELETE, UPDATE, REPLACE
+ DCL - GRANT, REVOKE

Read operations can be executed on any of the servers in the replication setup. Slaves
should therefore be started in read-only mode. Applications will not be able to modify
data directly on the slaves, but the replication stream will still be able to update data on
the read-only server.

In simple words, your application must be able to send writes to the master server and
reads to the slave servers. If your application is not able to do this, you can use other
options like application connectors or load balancers that support query routing with
read-write split to minimize the changes on the application side.

5.1. Application Connector

If your application runs on PHP, you can use MySQL native driver (mysgInd) to perform
read/write splitting without big changes on the application side. Java users can use
Connector] to do read/write splitting with some minor changes on the coding side.
Since the connector itself performs the routing, the extra network latency involved in
proxy-based solutions is avoided.

One of the major drawbacks with the application connector is you have to maintain

it on each of the application servers. For example, if a slave has been promoted as a
new master, a new configuration must be updated on every application server. Having
another tier that manages database availability is recommended. This is where a reverse
proxy aka load balancer comes in handy.

We have covered some examples on read-write splitting in the following blog posts:
» Read-Write Splitting with PHP mysqglnd, MySQL Replication and HAProxy
» Read-Write Splitting with Connector), MySQL Replication and HAproxy

nin3s 24


https://severalnines.com/blog/high-availability-read-write-splitting-php-mysqlnd-mysql-replication-and-haproxy
https://severalnines.com/blog/read-write-splitting-java-apps-using-connectorj-mysql-replication-and-haproxy

5.2. Fabric-Aware Connector

Oracle released MySQL Fabric, an extensible framework for managing farms of
MySQL Servers. At the time of writing, it supports two main category of features -
High Availability and scaling out using data sharding. For High Availability, MySQL
Fabric manages the replication relationships, detects the failure of the master and
automatically promotes one of the slaves to be the new master. As for sharding, the
admin can define how data is partitioned between shards - e.g., which table columns
are to be used as shard keys, and how to map the keys to the correct shard (HASH or
RANGE). This is all transparent to the application.

MySQL Connectors are used by the application code to access the database(s),
converting instructions from a specific programming language to the MySQL wire
protocol, which is used to communicate with the MySQL Server processes. A ‘Fabric-
aware' connector stores a cache of the routing information that it has received from
the mysqlfabric process and then uses that information to send transactions or queries
to the correct MySQL Server. Currently the three supported Fabric-aware MySQL
connectors are for PHP, Python and Java.

5.3. Reverse Proxy/Load Balancer

It is possible to deploy load balancers in multiple ways. You can deploy them on the
application hosts, you can deploy them on separate hosts, you can deploy them on
the database servers. The latter is not recommended because of the additional CPU
utilization that load balancers require - it is not a good idea to collocate any CPU-
intensive services on database servers.

Whether to collocate load balancers with the application or to use separate hosts
depends on how you would like to use the load balancer. Some of them, like ProxySQL
or MaxScale, do support query caching. In case you would like to benefit from this
feature, it might be better to collocate them with application hosts. Please keep in mind
that the local connection over the Unix socket will always have lower latency that the
connection to the proxy over TCP. You will benefit more from caching if the latency

will be lower. On the other hand, utilizing separated hosts removes potential resource
contention on the application hosts when both web servers and proxies would compete
for CPU. It is also easier to manage a limited number of performant proxy nodes rather
than tens of them, collocated with application servers.

By having a reverse proxy as the middle-man, the application side does not need to
perform health checks for slave consistency, replication lag or master/slave availability
as these tasks have been taken care of by reverse proxy. Applications just have to send
queries to the load balancer servers, and the queries are then re-routed to the correct
backends.

By adding a reverse-proxy into the picture, our architecture should look like this:

nin3s

25



Application : Load balancer ' Database
layer layer ; cluster layer

/ mastei'"--..__

readsiwrites

-
Ly - (T

/ ; ' AR

888 <— mysql > - &r&ads—-} FEERER R :
Reverse Proxy ol L0

(MaxScale, ProxySaL ° fead; siavet =t “" ClusterControl

Webl/Application/
Client CEtnpong. O \

slave?

At the time of writing, there are several reverse proxies that support read-write splitting
e.g MaxScale, ProxySQL and MySQL Router. ClusterControl v1.7.1 supports MaxScale
deployment, ProxySQL and HAproxy for master-slave replication right from the Ul.

5.3.1. MariaDB MaxScale

MariaDB MaxScale is a database proxy that allows the forwarding of database
statements to one or more MySQL/MariaDB database servers. The recent MaxScale 2.3
is licensed under MariaDB BSL which is free to use on up to two database servers.

MaxScale supports a modular architecture. The underlying concept of modules allows
to extend the MaxScale proxy services. The current version implements Read Write
splitting and Load Balancing. MaxAdmin is a command line interface available with
MaxScale that allows extensive health checks, user management, status and control
of MaxScale operations. ClusterControl gives you direct access to the MaxAdmin
commands. You can reach it by going to ‘Nodes’ tab and then clicking on your
MaxScale node:

nin3s

26


http://severalnines.com/blog/how-deploy-and-manage-maxscale-using-clustercontrol
http://severalnines.com/blog/how-deploy-and-manage-maxscale-using-clustercontrol
https://mariadb.com/products/mariadb-maxscale

- MaxScale
Selected : 10.0.0.201

v Node is OK

4 MaxScale - 10.0.0.201

list services ¥ User: Password: Execute | Reset Console

[10.0.0.201:6603] MaxScale> list servers

Servers.

Connections | Status

. — +
o
o
R
(a4

Address

|
DB_1 | 10.0.0.201 | 2306 | 0 | Master, Running
DB_2 | 10.0.0.2032 | 2306 | 0 | Slave, Running
DB_3 | 10.0.0.204 | 3306 | 0 | Slave, Running
DB_4 | 10.0.0.205 | 3306 | 0 | slave, Running
DB_5 | 10.0.0.202 | 3306 | 0 | slave, Running
------------------- - +. - + o

Execution finished at Thu, 14 Mar 2019 14:05:20 +0000
[10.0.0.201:6603] MaxScale> list services

Services.

----- +. + + L
Service Name | Router Module | #Users | Total Sessions | Backend databases
---------- + + + e .
RW | readwritesplit | 1| 1| b 1, DB 2, DB_3, DB_4, DB 5
RR | readconnroute | 1| 1| pB_1, DB_2, DB 3, DB_4, DB 5
DebugInterface | debugeli | 1| 1
CLI | eli | 2 | 6 |

+ + + +

Execution finished at Thu, 14 Mar 2019 14:05:31 +0000

To deploy a MaxScale instance, simply go to Manage > Load Balancer > Install MaxScale
and specify the necessary information. Choose the server instance to be included into
the load balancing set and you are good to go. Once deployed, you can simply send
the MySQL connection to the load balancer host on port 4008 for read/write splitting
listener or port 4006 for round-robin listener.

We have covered this in detail in this blog post. For example deployment and more
details, please refer to our blog post, How to Deploy and Manage MaxScale using
ClusterControl.

5.3.2. ProxySQL

ProxySQL is a new high-performance MySQL proxy with an open-source GPL license.

It was released as generally available (GA) for production usage towards the end of
2015. It accepts incoming traffic from MySQL clients and forwards it to backend MySQL
servers. It supports various MySQL topologies, with capabilities like query routing (e.q,
read/write split), sharding, queries rewrite, query mirroring, connection pooling and lots
more.

ProxySQL for MySQL Replication is designed around the concept of hostgroups -
different set of nodes which are somehow related. The idea behind it is that, under
some conditions (two hostgroups only, one for a master and one for all slaves, read_
only is used to differentiate between master and slaves) it is possible for ProxySQL

to start monitoring the read_only flag on those hosts. Through this, it can follow the
topology changes and automatically introduce changes in the server definitions to
mirror the topology. ClusterControl uses the ‘read_only’ flag to mark master (read_
only=0) and slaves (read_only=1). If you promote a slave as a new master manually, and
change read_only flags accordingly, ProxySQL can detect such change and move old
'master’ host to the ‘reader’ hostgroup while new master will be moved to the ‘writer’
hostgroup.

nin3s


http://severalnines.com/blog/deploy-and-configure-maxscale-sql-load-balancing
http://severalnines.com/blog/how-deploy-and-manage-maxscale-using-clustercontrol
http://severalnines.com/blog/how-deploy-and-manage-maxscale-using-clustercontrol
http://www.proxysql.com/

To deploy a ProxySQL instance, simply go to Manage > Load Balancer > Install ProxySQL
and specify the necessary information. Choose the server instance to be included into
the load balancing set and specify the max replication lag for each of them. By default,
ClusterControl will configure a default read/write splitter for the MySQL Replication
cluster. Any basic select query will be routed to hostgroup 20 (read pool) while all other
queries will be routed to hostgroup 10 (master).

Once deployed, you can simply send the MySQL connection to the load balancer host
on port 6033. The following screenshot shows the reader hostgroup (Hostgroup 20)
with some stats captured by ProxySQL:

ProxySOL i thons
10.0.0.201 = Node Actions v

v Moda is 0K

m Top Quesies Rules Servers Users Variables Scheduler Scripts Node Performance

ProxySQL Host Groups
Hostgroup 10 (writer) Hostgroup 20 (reader)
Hostname Status Conn. Used Conn. Free Conn. Err Queries Data Sent Data Recv Latency
10.0.0.201 = ~ OMNLINE o 0 ] - - 158 us
10.0.0.202 =* " OMLINE o o o - - 47T s
10.0.0.205 ~ ONLINE o o o - - 437 us
10.0.0.204 = " OMLINE 1] 1] o = - 415 us

10.0.0.203 " OMLINE 0 0 o - - 457 pe

We encourage you to read further on the following resources to get better
understanding on ProxySQL:

«  MySQL Load Balancing with ProxySQL - an Overview

» Using ClusterControl to Deploy and Configure ProxySQL on top of MySQL
Replication
e Tips and Tricks - How to Shard MySQL with ProxySQL in ClusterControl

5.3.3. HAProxy (Master-Slave Replication)

HAProxy as MySQL load balancer works similarly to a TCP forwarder, which operates in
the transport layer of TCP/IP model. It does not understand the MySQL queries (which
operates in the higher layer) that it distributes to the backend MySQL servers. Setting
up HAProxy for MySQL Replication requires two different HAProxy listeners e.g, port
3307 for writes to the master and port 3308 for reads to all available slaves (including
the master).

The application then have to be instructed to send reads/writes to the respective
listener, by either:

« Build/Modify your application to have ability to send reads and writes to the
respective listeners.

« Use application connector which supports built-in read/write splitting. If you
are using Java, you can use Connecter/J. For PHP, you can use php-mysqglnd for
master-slave. This will minimize the changes on the application side.

nin3s 28


https://severalnines.com/blog/mysql-load-balancing-proxysql-overview
https://severalnines.com/blog/using-clustercontrol-deploy-and-configure-proxysql-top-mysql-replication
https://severalnines.com/blog/using-clustercontrol-deploy-and-configure-proxysql-top-mysql-replication
https://severalnines.com/blog/tips-and-tricks-how-shard-mysql-proxysql-clustercontrol

severalnings

To create a HAProxy instance for master-slave replication, go to Manage > Load Balancer
> Install HAproxy and make sure that the check “Install for read/write splitting” is
enabled - this should happen by default for replication setups. The following screenshot
shows HAproxy instance stats deployed by ClusterControl for MySQL Replication:

— i s Gociea i S tooe Actions

~ Nodo is OK

4 haproxy_3308_ro

Detailed View of 10.0.0.201:5600 Seats URL @ it/ 10.0.0.201:9600/;csv/ | & update C Refresh =
I Server Queve I Session e Session ] Bytes s

Sams | Rl Cr | M Umt Cw | Mm  Umt  Cr  Max  Umt  kn out

e e I | | | | |

FAONTEND  OPEN 0 0 0 0 ) a2z 0 0

BACKEND uP o (] o o 1] o axn ] o

= puname: haproxy_10.0.0.201_3307_rw

FAONTEND  OPEN 0 0 0 0 0 sz 0 0

10.0.0.201 ue Active (] (] 128 o o (1] 4] (2] ] o m

BACKEND ue o 0 0 0 0 0 = 0 0

2 pxname: haproxy__3308_ro

FAONTEND  OPEN 0 0 o o o a2 o o

1000201 ue Acwe 0 0 2w o 0 0 0 8 0 0 )

10.0.0.203 ue Active o (] 128 o o o ] B4 o o =l

1000204 e Actve 0 0 2 0 0 0 0 5 o [ @

1000205 3 Acive 0 o 2 0 0 0 0 8 o 0 2

1000202 e Actve 0 0 12 0 [ 0 0 t 0 0 @

BACKEND ue ° 0 0 0 0 0 @m0 [

We have covered HAproxy in extensive details in our tutorial page, MySQOL Load
Balancing with HAproxy.

29


https://severalnines.com/resources/tutorials/mysql-load-balancing-haproxy-tutorial
https://severalnines.com/resources/tutorials/mysql-load-balancing-haproxy-tutorial

™ Failover with ClusterControl

In order to keep your replication setup stable and running, it is important for the system
to be resilient to failures. Failures are caused by either software bugs, configuration
problems or hardware issues, and can happen at any time. In case a server goes down,
ClusterControl will raise an alarm about the degraded setup and you will be notified

via email or pager. Failover (promotion of a slave to master) can be performed via
ClusterControl automatically or manually. Usually it will be the slave that has the most
up-to-date data. For automatic failover, it is possible for the admin to blacklist servers
that should not be promoted as masters, or have a whitelist of servers that can be
promoted.

How do you decide which slave is most up-to-date? The process is different depending
on whether you are using GTID or not. GTID makes it easier, although you could run
into issues like errant transactions. Failover of replication is covered in detail in “Become
a MySQL DBA" - Common Operations - Replication Topology Changes.

6.1. Automatic Failover of Master

To have a fully resilient MySQL Replication setup with automatic master failover, you are
advised to deploy a reverse proxy in front of the database instances. This will simplify
routing of queries from applications to the correct master after topology changes, thus
reducing the risks of errant transactions and minimizing database downtime. Please
refer to Reverse proxy/Load balancer section for details.

By default, ClusterControl’s automatic recovery is turned on. Failover will be performed
by ClusterControl when a failure on master happens. It is done in a matter of seconds
based on the following flow:

1. If ClusterControl is not able to connect to the master server, ClusterControl will
mark the failure master as offline.

2. An alarm will be raised to indicate replication failure and all available nodes are
on read-only.

3. ClusterControl will pick a master candidate based on replication_failover_
whitelist, replication_failover_blacklist or the most up-to-date slave.

4. ClusterControl will check for errant transactions on the master candidate. If
there are errant transactions, failover process will be stopped and an alarm will
be raised to indicate failure in failover procedures.

5. ClusterControl will then perform the master failover by stopping all slaves and
performing the CHANGE MASTER statement to the new master.

6. |If failover succeeds (all slaves are started), ClusterControl marks the new master
as writeable (set read_only = 0) and alarm is cleared.

7. Reverse proxy shall then update the load balancing set accordingly.

Unless explicitly disabled (replication_check_external_bf_failover=0) ClusterControl will
attempt to connect to the slaves and ProxySQL instances (if available in the setup) to

nin3s

30


http://severalnines.com/blog/mysql-replication-and-gtid-based-failover-deep-dive-errant-transactions
http://severalnines.com/blog/become-mysql-dba-blog-series-common-operations-replication-topology-changes

verify if those nodes can access the failed master. If some of the nodes can do that, the
failover will not happen. Most probably, there is a network partition and ClusterControl
somehow cannot directly connect to the master. But since the master can be seen by
the slaves and/or the load balancer, then the master is still running.

6.1.1. Whitelists and Blacklists

To anticipate the next slave to be promoted as a new master during failover, there are
two variables you can set in the CMON configuration file for this cluster:

* replication_failover_ whitelist - A list of IP’s or hostnames of slaves
(comma separated) which should be used as potential master candidates. If this
variable is set, only those hosts will be considered.

* replication_failover_blacklist - A list of hosts (comma separated)
which will never be considered a master candidate. You can use it to list slaves
that are used for backups or analytical queries. If the hardware varies between
slaves, you may want to put here the slaves which use slower hardware.

In our case, we would like to have the backup-master (10.0.0.202) as the next master
whenever failover occurs. Thus, inside CMON configuration file (assuming the cluster_id
=1), /etc/cmon.d/cmon_1.cnf, we appended the following line:

1 replication_failover_whitelist=10.0.0.201,10.0.0.202

Take note that failover is attempted ONLY once. Should a failover attempt fail,

then no more attempts will be made until the controller is restarted. You can

force ClusterControl to retry with a more aggressive approach by specifying
replication_stop_on_error=0 inside CMON configuration file (however, there is a
chance the slaves may have broken replication). Or perform a manual master failover as
described in the next section.

6.2. Manual Failover of Master

Writes are done on the master server only. If the master fails, replication will stop.
Failover must be done by promoting one of the most updated slaves to master to
restore our replication setup. Applications doing updates must then reconnect to the
newly promoted master and then continue to operate.

If the master is down, we need to promote one of the slaves (backup-master) to
become a master. To achieve this, go to ClusterControl > Nodes > choose backup-master
node > Promote Slave:

nin3s

31



Mutti Master =725 28 0y o
-~ Selected : 10.0.0.202 Master : 10.0.0.201 Read Coples : 10.0.0.201,10.0.0.205

« Node is OK

Overview Top DB Performance DD Status DB Variables

& Intel(R} Cora(TM) i7-8850H CPU & 2.60GHz

1Cores 2502 MHz  Load: 0.680.530.42  usrfsysflowait: 22 21/12.06/0.03  Host Uptime: 3 Heurs 31 mmses  Distribution: ubuntu

= Managed Process
+ mysqld <pid: 204535

Node Stat
Show Range:
[ 15 Minutes Ago v
CPU Usage v
All cores.
100.00 %
50.00 % .
0% —_ _ - - =
1606 1608 1610 1812 164 1616 16:18 1620
@ ide @ User Systom @ 10Wait @ IRQ @ Steal

You will be prompted with the following:

i= Node Actions v

55H Console

Schedule Maintenance Mode
Rebact Hest

Restart Node

Disatsle Readonty

Rebuild Replcation Slave

Version: 16.04

Change Replicaton Master
Start Slave
Stop Node

Unregister Node

Network Usage v

48.83 kBls.

24.41 kBls

———— e~ — e~

0Bs
1606 1608 1510 16:12 16:14 16:16 186:18 1620

Sent  — Recelved

Are you sure you want to perform this action?

Cancel

Effectively, the selected slave has become the new master and will process updates

while the old master is down:

Master Nodes
Host . Read Only Sarver ID Status
+ 10.0.0.202 MNode is Writable. 5 Oniine and functioning.

s

Executed Gtid Sat Binlog Position
04200bag-4649-11e9-9cc5-
08002 TeeBTc4:1-
193,23B5628a-4648-11e9-

binlog.000003 60791912

99e8-08 e
37,f2a0ba16-4649-11eS-aded-
030027eeBTcd:1-8

When the old master comes up again, it will be started as read-only and then re-
synchronize with the new master (backup-master) as a slave. This action is automatically
orchestrated by ClusterControl. The following screenshot shows the old master
(10.0.0.201) has became a slave for the backup-master (10.0.0.202) in the replication:

Hlave Nodes.

Host . Fiead Only Sarver ID Stats Murster Host

o 10,0,0.201 Nt s Pand Only. 1 ‘Waiting for master 80 senc ever 10.0.0 202

Flss Slaen s read ol rely log: waitng  (sing semisync)
for mons updates.

+ 10,0.0.203 Hods is Read Only. 2 Watting for master to sen o 10.0.0. 202

Bm System lock fuming semisync)

¥ 10.0.0.204 HNode is Read Only. a E 10.0.0. 200

st {imng semisync)

¥ 10.0.0.205 HNoce is Read Only. 4 1000202

Bes fumng nomisymc

C Refresh =

Se Sat

Theadt Maator Log. Canc Master Log.
Pes Pos

Lag Master Log Fie

¥

binicg 000003 Ss0zATES BEOZATES 2 645491 Ve ndel. 4

595-0548

11e0-80c8-

1.193,
28856268-4648-1109-9008-
08002 TeedTed 1.7,

BAOFITRS albal§-4649-1160-sdal- CAX0bal-LB49-1190-Boc k-
19548 -

93,
4aB5626-4648-1109-90e8-
08002TeedTcd1-37,

SELEEATE

88025870 042006aB-S040-1 198-DocS-
O002 ToolTe41-103,

AABSAZAR- 454811 09.9048-

137, 137,
2adbal 6-4649-11ed-ad02- Zalbal 6-4649-11e8-a802-
9552 19552

nin3s

32



The old master (10.0.0.201) may need to do some catching up after the slave service is
started and once it is up-to-date with the new master (10.0.0.202), it will remain as slave.

6.3. Failure of a Slave

If a slave fails, applications connected to the slave can connect to another slave and
continue to operate. ClusterControl will show the current status of failed slave in the
Overview page:

Slave Hodos
C Rafueh -
B
Host .« Faad Oniy Server I Status Mastor Host Lag Mastor Log Fike ::: MamiarLoy 'I:::M“"l"" e et Sat
1000801 Moo bs Plesd Ordy. 1 watin stor o send wvent 10.00.202 o binlog 200003 eazaTaD resosTD 203081646437 1002843 470000516401 106-Doct-
far™ Rac tra ey kg sarinyme) 250520737 A-109,
asiS408a 46481165 Boal-
0B0GZTeaBTo4:1-37,
Eainaté-4640-11ed-nde
ToalTed 150202
@ 5000200 Mods is Read Owdy. 2 Binlog 900003 reszncen 4419173 Fnna1e4640- 116D ade2 (4200R08 46401163 Dect
s 20238 "0,
BaESET60 4648 1100 D508
0B00TeoRTeA:1-0T,
albalt- 401100 082
0B0GZ7o0Bo4:1- 24848
+ 10.0,0.204 Mods s Read Ovly. 0 os Binlog 200003 Teszna0e resnEads n3na16-4043-11ed-nds2 (4200R05-4540-1165-Dces-
s BaESEDn-4548-1100 00ud
0B0OTe0Bed:1-17,
Ealba16-4040-1160 0402
000027ea87 04120296
¥ 10.0.0.205 Mode is Read Only. 4 il 1000202 o Erarkoagy NN TeRmA4 ToLreNI4 - Te9Pecs - 11e9Pect
s sl (uming semisyme) 1189, 1183,
ABSADA04AL8-1100.0008 mabSADAn-AAIA-1100 Sdub
1-37, 1-37,
Tlef-adez- Tebade2-
129230 29230

When the slave comes up again, ClusterControl will automatically resume the replication
with the master and make the slave available to the applications. Depending on how
long the slave is lagging behind, or whether ClusterControl was unable to resume the
replication due to replication errors, you can resynchronize the missing transactions
manually. Or you can use the 'Rebuild Replication Slave’ feature to rebuild the slave.

In this case, ClusterControl will delete the old data on the slave, take a dump of the
master data from the selected master and provision the slave with it, before finally
reconnecting it with the master.

ClusterControl [KEEES chmser_1 e & o +]
Ay Dephy  Impont  Gloos Setigs  Logost
S Cusens Cluster_1 {Faled nodes detecied )
FEPUCATON | Cuser €01 Autc Recwwy: Chster @/ Hocn @ CONTROLLER: v MASTER: v SLAWVE v 0w v HAPRORS ¥ MAGCME ¥ PROIYSOL = -
€% Operabonal Reports
B o i B Owervew  ch Nodes M Distbosess  d Tepohgy O OweyMeniir I Performancs b Backup A Masge U Seewity o Alaa BT & Legs UM O Semuags
mal Notfcations
- iningraions Controer Fsad Copy
Foooreirar oo ol F Nt Astions s
B ey Management ®w00zis 05z wvent 0n ke st sbbest]: Can'l find recerd in ‘sbteet, Ermor. code: 1032: ander eror HA ERR KEY NOT FOLN[ ¥3H Comsde [
Sshoduie Mnirtarance Mods
e Hoddes
AP e htsmaguerace ot i sk bt Host
i e 08 Pariarmance B Status 0 Variables
St Hode
& ooz s
g w Master weitnkie Fustat oo
3 InbadR) Core(TMM) I7-8350H CPU @ 2600k
& 100201 1Cones 2562 Mz # 0.6 1311081080 s 56 b Virsion: 16.04 sanim Rnsconly
Rsad Capy | mad oriy Promstn Giave
Lag: 09 W Msnsged Precess
& —— [
1 Change Replcation Mastsr
iy ode Sme Shart Slave
Show Range: Unveggser tode
& ooa 2 1 Hour Aga v
Raat Ciopy | mat oy
Lag: 0
CPU Usaga - Network Usage -
© 1000205  coves SebrTac o1
Plead Copy | mad oy
Lag: 05

WPy
Nowr BoAProy Hoden

; Suppon Forum @ eoozn - = Eat _('.—_____
a— 1030 50 1530 1540 w0
Sear LlarSeahs Nertir
0 @ User Sratsm owst @ Ra @ Stead Bent = Received
@ oo

At this point, the replication setup has been restored to its original topology.

nin3s




6.4. Pre and Post-Failover Scripts

ClusterControl provides several hooks that can be used to plug in external scripts. Below
you will find a list of those with some explanation.

1. Replication_onfail_failover_script - this script executes as soon as it has been
discovered that a failover is needed. If the script returns non-zero, it will
force the failover to abort. If the script is defined but not found, the failover
will be aborted. Four arguments are supplied to the script: arg1="all servers’
arg2="oldmaster’ arg3="candidate’, arg4="slaves of oldmaster’ and passed
like this: ‘scripname arg1 arg2 arg3 arg4'. The script must be accessible on the
controller and be executable.

2. Replication_pre_failover_script - this script executes before the failover happens,
but after a candidate has been elected and it is possible to continue the failover
process. If the script returns non-zero it will force the failover to abort. If the
script is defined but not found, the failover will be aborted. The script must be
accessible on the controller and be executable.

3. Replication_post_failover_script - this script executes after the failover
happened. If the script returns non-zero, a Warning will be written in the job
log. The script must be accessible on the controller and be executable.

4. Replication_post_unsuccessful_failover_script - This script is executed after
the failover attempt failed. If the script returns non-zero, a Warning will be
written in the job log. The script must be accessible on the controller and be
executable.

5. Replication_failed_reslave_failover_script - this script is executed after that a new
master has been promoted and if the reslaving of the slaves to the new master
fails. If the script returns non-zero, a Warning will be written in the job log. The
script must be accessible on the controller and be executable.

6. Replication_pre_switchover_script - this script executes before the switchover
happens. If the script returns non-zero, it will force the switchover to fail. If the
script is defined but not found, the switchover will be aborted. The script must
be accessible on the controller and be executable.

7. Replication_post_switchover_script - this script executes after the switchover
happened. If the script returns non-zero, a Warning will be written in the job
log. The script must be accessible on the controller and be executable.

As you can see, the hooks cover most of the cases where you may want to take some
actions - before and after a switchover, before and after a failover, when the reslave has
failed or when the failover has failed. All of the scripts are invoked with four arguments
(which may or may not be handled in the script, it is not required for the script to utilize
all of them): all servers, hostname (or IP - as it is defined in ClusterControl) of the old
master, hostname (or IP - as it is defined in ClusterControl) of the master candidate and
the fourth one, all replicas of the old master. Those options should make it possible to
handle the majority of the cases.

All of those hooks should be defined in a configuration file for a given cluster (/etc/
cmon.d/cmon_X.cnf where X is the id of the cluster). An example may look like this:

1 replication_pre failover_script=/usr/bin/stonith.py
2 replication_post_failover_script=/usr/bin/vipmove.sh

Of course, invoked scripts have to be executable, otherwise cmon won't be able to
execute them.

nin3s

34



6.4.1. When Hooks Can Be Useful?

Let's see a couple of example cases where it might be a good idea to implement
external scripts. We will not get into any details as those are too closely related to a
particular environment. It will be more of a list of suggestions that might be useful to
implement.STONITH script

Shoot The Other Node In The Head (STONITH) is a process of making sure that the old
master, which is dead, will stay dead (and yes.. we don't like zombies roaming about

in our infrastructure). The last thing you probably want is to have an unresponsive

old master which then gets back online and, as a result, you end up with two writable
masters. There are precautions you can take to make sure the old master will not be
used even if shows up again, and it is safer for it to stay offline. Ways on how to ensure
it will differ from environment to environment. Therefore, most likely, there will be no
built-in support for STONITH in the failover tool. Depending on the environment, you
may want to execute CLI command which will stop (and even remove) a VM on which
the old master is running. If you have an on-prem setup, you may have more control
over the hardware. It might be possible to utilize some sort of remote management
(integrated Lights-out or some other remote access to the server). You may have also
access to manageable power sockets and turn off the power in one of them to make
sure server will never start again without human intervention.

6.4.1.1. Service Discovery

We already mentioned a bit about service discovery. There are numerous ways one

can store information about a replication topology and detect which host is a master.
Definitely, one of the more popular options is to use etc.d or Consul to store data

about current topology. With it, an application or proxy can rely in this data to send the
traffic to the correct node. ClusterControl (just like most of the tools which do support
failover handling) does not have a direct integration with either etc.d or Consul. The
task to update the topology data is on the user. She can use hooks like replication_post_
failover_script or replication_post_switchover_script to invoke some of the scripts and

do the required changes. Another pretty common solution is to use DNS to direct traffic
to correct instances. If you will keep the Time-To-Live of a DNS record low, you should
be able to define a domain, which will point to your master (i.e. writes.clusterl.example.
com). This requires a change to the DNS records and, again, hooks like replication_
post_failover_script or replication_post_switchover_script can be really helpful to make
required modifications after a failover happened.

6.4.1.2. Proxy Reconfiguration

Each proxy server that is used has to send traffic to correct instances. Depending on the
proxy itself, how a master detection is performed can be either (partially) hardcoded or
can be up to the user to define whatever she likes. ClusterControl failover mechanism is
designed in a way it integrates well with proxies that it deployed and configured. It still
may happen that there are proxies in place, which were not installed by ClusterControl
and they require some manual actions to take place while failover is being executed.
Such proxies can also be integrated with the ClusterControl failover process through
external scripts and hooks like replication_post_failover_script or replication_post_
switchover_script.

6.4.1.3. Additional Logging

It may happen that you'd like to collect data of the failover process for debugging
purposes. ClusterControl has extensive printouts to make sure it is possible to follow the
process and figure out what happened and why:. It still may happen that you would like
to collect some additional, custom information. Basically all of the hooks can be utilized
here - you can collect the initial state, before the failover, you can track the state of the
environment at all stages of the failover.

nin3s 35



II Operations - Managing Your
MySQL Replication Setup

How you choose to deploy a replication setup also affects how you should manage

it. In this section, we will assume a single master with multiple slaves, as deployed in
section 4 of this tutorial. We'll see how we can manage different operational tasks using
ClusterControl.

7.1. Show Replication Status

You can find a summary of MySQL Replication status directly from the summary bar
in the database cluster list. The Replication cluster status can be ACTIVE, FAILED or

Actvity Depioy Import  Giobal Settings  Logout
| O Custert o1 vension: 5.7 e
= .
REPLICATION [Faled noces dotected] Auto Recovery: Cluster O/ oge ) CONTROLLER: ' MASTER: v SLAVE: v (iv'v  HAPROXY. ¥ MAXSCALE: v  PAOXYSOL: v
= Overdew  h Nodes @ Dashboards ™ & Topology @ OuveryMoniior |y Feromance W Badup A Manage U Secuity 4 Aemsfl] & Logs & Seings

You can find further details on the master status, slave status and host statistics directly
from the Cluster Overview page:

Mastar Modes
C Refresh =
Homt . Read Oy Server D Seatus Exgcutec Giid Set Fanlog Poation Birlog do o Binlog groee do
1000202 Noda i Writabie. 5 Oniing and functioning. DA2006a6-4640-11e8-Bocs- birdog 000033 B0
es 002 Toed a1
1 484811,
ed-0BI0ITeedTci:1-
27, 20001640451 a0 402-
BON2Toe8Ic4:1-35443
Last updated. Mar 14, 2019 15:56:55
Slave Nedes
C Refresh
Host . Funad Gnky Sorverl) | Sts Mastar Host Lag Naaster Log Fila m""’w"m :: L0 ptrieed Gt Sen Exncuted Gitct Sot
v 100020 Noceis Rsad Ony. 1 o ik COOO0Y R s oi-aia Tebpocs-
189,
st 304811 69608
DROCE ToelTcd 137,
22001 0-4545-110f-aba-
08000T0e3Ted:1 35443
@ 100050 Moos b Fssd Onyy. 2 6L Threaus STOPPED fur- Coult  10.0.0.202 ik C0000Y Bz 410173 kel Trh-Boxt-
[las odatn rows event on sk asias 1
A4B5020 0581609068
¥

et
and_log_pos 74416785, ermar

7.2. Start/Stop Replication

ClusterControl supports starting or stopping a slave from its Ul. It's similar to
performing ‘STOP SLAVE' and 'START SLAVE' via command line.

nin3s



-~ Read Copy (5.7.25-28-log, slave
Selected : 10.0.0.203 Master : 10.0.0.201 Read Copies : None

@ SQL Thread STOPPED (err: User stopped) 10 Thread STOPPED (err: User stopped ).

Overview Top DB Performance DB Status DB Variables

E Intel(R) Core(TM) i7-8850H CPU @ 2.60GHz
1Cores 2592MHz  Load: 0.750.58 0.55  usr/sys/iowait: 21.00/15.86/0.03  Host Uptime: 1 How 36 Minutes  Distribution: ubuntu ~ Version: 16.04

= Managed Process
+ mysqld <pid: 1294

If either SQL or |10 threads are stopped, ClusterControl will list out an extra option to
start/stop the thread.

7.3. Promote Slave

Promoting a slave to master might be required if e.g. the master server goes down, or
in case you would like to perform maintenance on the master host. Assuming you have
GTID-based replication configured, you are able to promote a slave to master easily
using ClusterControl. If the master is currently functioning correctly, then make sure you
stop application queries before promoting another slave. This is to avoid the data loss.
Connections on the current running master will be killed by ClusterControl after a 10
second grace period.

Mutti Master

Selected : 10.0.0.202 Master : 10.0.0.201 Read Coples : 10.0.0.201,10.0.0.205 Shads ek v
v Noda Is OK S5H Console
Schedule Maintenance Mode
Overview Top DB Performance DO Status DB Variables Rebact Hest
Restart Node
B Intel{R) Core(TM) i7-8850H CPU @ 2.60GH:z Disabole Readonly
1Cores 2502MHz  Load: 0.680.530.42  usrisys/fiowait: 22.21/12.06/00.03  Host Uptime: 3 tcurs 31 Mnes  Distribution: ubuntu  Version: 16.04
romote e
= Managed Process Aebuild Replication Slave
+ mysqid <pid: 20463>
Change Replicaton Master
Node Stat Start Slave
Show Range: Stop Node
B3 15 Minutes Ago - Unregister Node
CPU Usage v Network Usage v
All cores.
8.63 kE/s
. .—__.‘-—M-_..-—-———-————/\-"—-—"_/\ e
! ' ' ] e o P e

1606 1608 16:10 1612 1614 1616 1518 1620 6506 1608 110 w12 16:14 16:16 16:18 16:20

idie @ User System owst @ IRQ @ Steal Sent - Recelved

7.4. Rebuild Replication Slave

In case a slave gets corrupted, or it does not sync with the master for some reason,

you might want to rebuild it. With ClusterControl, you would be able to rebuild a
replication slave using the data from the master. It uses Percona Xtrabackup to stage
the replication data on the slave. Note that this feature will wipe out the MySQL datadir
of the slave.

nin3s

37



cluser 1

M@ | 3| &

+

Ay Dephy  Impont  Gloos Setigs  Logost
I Curen I Cluster_1 (Fadled nodes
L= PEPUCATION Cuwter 061 Acte Flscovery: Clnter O/ Noce @ CONTROLLER: «  MASTER: @ SLAWVE « 0 v o HAPROKY: ¥ MAGCAE ¢ PROIYSOL - . = -
€ Opsatoral Raperts
B i s B Owervew  h Nodes 0 Disthosds b Tepobay O OGuwyMeniter L Peormance b Backup A Manage U Seeuity = Alwrss U & Lo IO O Sewans
- Intogratons Controer Rend Copy =7 ==
Getrenen Necke Suected: N T s Actions v
@ Way umagement @ 100215 0 S0L Thrusd STOPPED 00 tase btest sbbesth; Can't bt werdin st ods: 1092: hander eeor HA ERFL FoLn 334 Corece oo
Aol MATHTRE, » Schoculs Mairtonance Mods
& User Managernent Hodes
Liing of noes in e ket Flanoat Host
g - i e 08 Pariarmance o Stas 0 Variables
St Hode
@ ooz -
g i Master weitnkie Fustat oo
@ InteliR) Core(TM) I7-8550H CPU @ 2.800k2
® 1000201 1Cones 2662 MHz » s 56 M Version: 18.04 rsae sty
Rsad Capy | mad niy Promstn Giave
Lag: 09 W Msnsged Precess
= il sons R R
Change Repication Master
ode Sme St i
Show Range: reegster Hode
1 Hour Ago
CPU Usaga - Network Usage -
@ 1000205 4 cores it
Flead Copy | mad oriy e
Lo T8
HAProny s -
our beAPreny Hoks s000%
& ooz
&y Support Forum % Lot b e s E T e e e o ﬂ
T 1500 15:10 1620 1530 1540 550 1500 50 1520 0
Seus MarSesh Mot
0 @ User Spstsm 0 OWsit @ IRQ @ Stesd Sent  — Recaived
& 10020

Before proceeding with the rebuilding process from ClusterControl, you have to choose
the available master. The slave process will be started automatically once the rebuilding

completes.

Confirm Rebuid Replication Slave

© Close

Rebuild the Slave node 10.0.0.203:3306 with data from the selected node

Select a Master node:

Netcat port:

O The following actions will happen:
Stop MySQL Server
Remove content from its datadir

Start the Slave

v 10.0.0.201:3306 (Multi-Master) ]

10.0.0.204:3306 (Slave)
10.0.0.205:3306 (Slave)
10.0.0.202:3306 (Multi-Master)

Stream a backup from the Node to the Slave using Xtrabackup

O Click 'Cancel' to abort, or 'Proceed' to go ahead.

Cancel

The staging process will be performed by Percona Xtrabackup due to its hot-backup
capability on InnoDB storage engine. If you have MyISAM tables, FLUSH TABLES will
happen at the end of the backup process and during this time, the chosen master will

be read-only momentarily.

nin3s

38



7.5. Backup

We have blogged previously about backup strategies for MySQOL. ClusterControl
supports mysqldump and xtrabackup (full and incremental) to perform backups.
Backups can be performed or scheduled on any database node (master or slaves) and
stored locally or stored centrally on the ClusterControl node. When storing backups on
the ClusterControl node, the backup is first created on the target database node and
then streamed over using netcat to the controller node. You can also choose to backup
individual databases or all databases. Backup progress is available underneath it and
you will get a notification on the backup status each time it is created.

To create a backup, simply go to Backup > Create Backup and specify the necessary
details:

Create Backup ocee | Create Backup 0 Cose

Backup Settings ©
Backup ©
Backup Method Usa Compression x
xtrabackup (full) v
Compression Level G (Systemn Default) v
Eaciap Hosl Backup Locks @ x
10.0.0.201:3306 (Master) v
Lock DOL per Table L] n v
Enable Partial Backup n v Xtrabackup Parallel Copy Threads i
Storage Location @
Networ ing Threttle Rate (MB/s) @ 0z
Store on Controller v
Use FIGZ for parallel gzip n v
Storage Directory ¥
Enable Encryption *
froot/backups - =
Backup Subdirectory @ O Encryption key will be created automatically
jon ©@
Metcat port
9000 0
Upload Backup to the cloud @ [T n v
Back Back

To schedule backups, click on “Schedule Backup” and configure the scheduling
accordingly:

nin3s

39


http://severalnines.com/blog/mysqldump-or-percona-xtrabackup-backup-strategies-mysql-galera-cluster

Create Backup © Close

Local time on controller host: Fri Mar 15 2019 10:51:36 -00:00

Every: Day ¥ at 0¥ : 0V

Backup schedule for: 00:00 every day

Backup @
Backup Method

xtrabackup (full) v
Backup Host

10.0.0.201:3306 (Master) v
Enable Partial Backup
Storage Location @

Store on Controller v l

Storage Directory

/root/backups

Backup Subdirectory (i}

BACKUP-%l

Netcat port

9999 J

Upload Backup to the cloud o | new |

Back

Backups created by ClusterControl can be restored on one of the database nodes.

7.6. Restore

ClusterControl has ability to restore backups (mysqldump and xtrabackup) created

by ClusterControl or externally via some other tool. For external backup, the backup
files must exist on the ClusterControl node and only xbstream, xbstream.gz and tar.gz
extensions are supported.

All incremental backups are automatically grouped together under the last full backup
and expandable with a drop down. Each created backup will have “Restore” and “Log”
buttons:

nin3s

40



ClusterControl [EESEE a1 e & o +
Aty Deply  Impot  Glooal Setngs  Logodt
EE cusiers Backip Sat 1 # Compiated atranackun -
B 0 st T8 Mo Action 8 20190315 11:51:42 (CET) [ = AN
& Opertoral Reperts
Full Backups Backip Dutals

B5 Emal hoshcations o

1002 1500 aGUPLTACKUR-1 o @ @ 00,0201
W Iningratons T

P D b {37.6 M}

6 Key Mmsgement
Incromantal T (atest)

Compieted # 2019-03.15 13:08:31 [ET)

BACHUP-T 1305 13

B User Managermen
1002 15 et Backups BACKLID-7 o @ ¥

&

Incremantal 6 * Compieted o 2019-03-15 12:04:11 £ET)
EACKLP§ 136548
i M 100,215 oot backupsBACKLIP-6 o % =
Incremantal # Compiered 1 2019-03-15 12:02:12 {CET)
BACKLP-S 1365 1
100215 CCU EACKUPVBACHLIP-S o % W
Incremantal 4 % Crmpistec s 2019-03.15 12-00-13 £ET)
EACKUP.4 1306 b8
1002150 oo AP BACKUP 4 o % %
antal 3 ¥ Compiated M 2019-03-15 11:58:11 {CET)
% Suppon Forum BACKUP-3 1360 B
10 0215 et tackups BACKUP-3 o @ §
O GCiose me Incramantal 2  Compieted a1 2019-03-16 11:56:11 (SET)
BACKLP2 1308 48

To restore a backup, simply click on the “Restore” button for the respective backup. You
should then see the following Restore wizard and a couple of post-restoration options:

Restore Backup

Select full backup to be restored

Backup method and type  Size
xtrabackupincr 136.5 kB

Select where you want to restore this backup from

10.0.2.15:/root/backups/BACKUP-7

Point In Time Recovery (PITR) @ [57)

Date
2019-03-15 12:06:11 (CET)

Restore Time (specify time in server timezone: UTC) @

AP AR TV M R AA- e

| O Note: Initially, only a single node (master) of the cluster will be restored. Please
i verify the integrity of the dataset on the recovered node and then individually
i rebuild each remaining node from the "Node Actions” menu,

Cancel

nin3s

41



If the backup was taken using Percona Xtrabackup, the replication has to be stopped.
The following steps will be performed:

1.

2.
3.
4

Stop all nodes in the replication setup.
Copy the backup files to the selected server.
Restore the backup.

Once the restore job is completed, start the restored node under ClusterControl
> Nodes > select the restored node > Start Node.

Once started, promote the node as a new master (if it wasn't a master) at
ClusterControl > Nodes > select the restored node > Promote Slave.

On each slave, rebuild the replication slave by go to ClusterControl > Nodes >
slave node > Stage Replication Slave.

ClusterControl can also be used to perform a Point in Time Recovery - you can either
decide about a point in time (with a granularity of one second) or you can specify exact
binary log file and position up to which backup should be restored.

A critical part of the backup is the restore. The main issue is that you cannot tell if the
backup will work unless you actually attempt to restore it. Every backup is Schrédinger’s
backup - it may work or not and you can't tell its state unless the restore is attempted.

That's

why testing of the backups is a must-have. ClusterControl provides you with an

easy way of doing that. When scheduling a backup you can decide whether to run the
restore test or not.

When

Create Backup © Close

Backup Settings @
Use Compression ®
Compression Level 6 (System Default) v

Backup Locks i ]

0
ol

Lock DDL per Table @
Xtrabackup Parallel Copy Threads 1 v
Network Streaming Throttle Rate (MB/s) o 0s

Use PIGZ for parallel gzip
Failover backup if node is down
Verify Backup [

Enable Encryption

Retention @
etention | ERNCEVER (VW Custorn Keep Forvever

ol ol
’(.E{.Q

you decide to do so, you will be presented with another set of options.

nin3s

42



Create Backup O Cose

®—— 0 0

Verify Backup

S

Restore backup on @

@ Press enter to add node

Install Database Software
Disable Firewall?
Disable SELinux/AppArmor?

Shutdown the server after the backup have been restored

mlojolo
< < < <

o
4

Verify the backup after N hours after completion

What you have to define is the hostname or IP of the host on which you want
ClusterControl to attempt the recovery. You can ask ClusterControl to set the node up
and install MySQL. You can also either shutdown the server after every restore test or
just keep it up and reuse it in the future. Backup can be restored either immediately
after the backup completed or scheduled to start after a certain delay.

Similar case is when you attempt to restore one of the backups:

Restore Backup O Close

Select how do you want to restore this backup

() Restore on node

o Restore the backup on an existing database node.

(® Restore and verify on standalone host

You can either restore it on the cluster or you can run the backup restore on a
standalone host. Here, in addition to the backup testing and verification, one of use
cases is to reduce data loss when restoring partially deleted data. Let's assume you
have a large data set and you do not take a logical backups with mysgldump due to the
time required to create such backup. Let's assume that a small table or a subset of rows

nin3s

43



have been deleted or mistakenly updated. If you will restore the whole dataset, you will
lose all modifications that happened afterwards. What you can do instead is to use this
option to restore a backup set on a separate node, keep it up and running and then
extract (using SELECT INTO OUTFILE or by any other means) only the data you want
and then load it on the master server.

7.7. Software Upgrade

You can perform a database software upgrade via ClusterControl > Manage > Upgrades
> Upgrade. Upgrades are online and are performed on one node at a time. One node
will be stopped, then the software is updated through package manager and finally
the node is started again. If a node fails to upgrade, the upgrade process is aborted.
Upgrades should only be performed when there is as little traffic as possible on the
database hosts.

You can monitor the MySQL upgrade progress from ClusterControl > Activity > Jobs, as
shown in the following screenshot:

Full Job Details

° Upgrading Cluster

Expand Job Specs w

It Copy to clipboard

N

[16:01:01]:All specified slaves has been upgraded.
Ensure all slaves have been upgraded.
Next step: Promote an upgraded slave to become the new master and then upgrade the old master.
Warning. The next step may require application downtime since there will be a change of master.
[16:01:01]:10.0.0.205:3306: Started slave successfully.
[16:01:01]:10.0.0.205:3306: Collecting replication statistics.
[16:01:01]:10.0.0.205:3306: Starting slave.
[16:01:01]:10.0.0.205:3306: Restarted mysqld
[16:01:01]:10.0.0.205:3306: Responded to 'ping’'.
[16:00:56]:10.0.0.205: All processes stopped.
[16:00:46]:10.0.0.205: Stopping MySQL service.
[16:00:46]:10.0.0.205:3306: Stopping mysqld (timeout=30, force stop after timeout=true).
[16:00:45]:10.0.0.205:3306: Needs to be restarted following mysql_upgrade.
[16:00:45]:10.0.0.205: mysql_upgrade succeeded
[16:00:45]:10.0.0.205: "Yusr/bin/mysql_upgrade --skip-write-binlog --force -u'root’ -p
[16:00:44]:10.0.0.205:3306: Started mysqld.
[16:00:44]:10.0.0.205:3306: Responded to 'ping’.
[16:00:37]:10.0.0.205:3306: Starting mysqld.
[16:00:32]:10.0.0.205: Verifying that the MySQL server is not already started.
[16:00:32]:10.0.0.205: Output:
[16:00:23]:10.0.0.205: All processes stopped.
[16:00:16]:10.0.0.205: Stopping MySQL service.

Pk Akl |

succeeded

AT N O O o T T O O O O O S L WY

nin3s

44



ClusterControl performs upgrade of MySQL Replication setup by upgrading all slaves,
one at a time. Once all slaves have been upgraded, verify the new version is correct
from the Cluster Overview page. Then, promote an upgraded slave (using ‘Promote
Slave’) to become the new master. Finally, upgrade the old master by repeating the
same upgrade step.

7.8. Configuration Changes

System variables are found in my.cnf. Some of the variables are dynamic and

can be set at runtime, others not. ClusterControl provides an interface to update
MySQL configuration parameters on all DB instances at once. Select DB instance(s),
configuration group and parameter and ClusterControl will perform the necessary
changes via SET GLOBAL (if possible) and also make it persistent in my.cnf.

Change/Set Parameter X

The parameter will be changed or created in the specified group. ClusterControl will
attempt to dynamically set the configurationvalue if the parameter is valid. If
parameter and value is valid, then the change can be persisted in the configuration

file.
DB Instance: 10.0.0.201 (mysq| - master), 10.0.0.203 (mysql - slave), ¥
Group: MYSQLD hd
Parameter: max_connections b
Current Value(s)
Host Value
10.0.0.201 500
10.0.0.203 500
10.0.0.204 500
10.0.0.205 500
10.0.0.202 500
New Value: .800

Proceed Cancel

nin3s




If a restart is required, ClusterControl will acknowledge that in the Config Change Log
dialog:

Config Change Log X

M H Db Node Restart
essage ost Required?

+ 10.0.0.201:3306: Successfully changed and set max_connections=800  10.0.0.201 No

in section [MYSQLD].

Previous value was 214.

The change has been persisted in the config file and successfully set with

SET GLOBAL.

No DB node restart is required.

+ 10.0.0.203:3306: Successfully changed and set max_connections=800  10.0.0.203 No
in section [MYSQLD].

Previous value was 214.

The change has been persisted in the config file and successfully set with

SET GLOBAL.

No DB node restart is required.

+ 10.0.0.204:33086: Successfully changed and set max_connections=800  10.0.0.204 No
in section [MYSQLD].

Previous value was 214.

The change has been persisted In the config file and successfully set with

SET GLOBAL.

No DB node restart is required.

Change More Parameters Close

More information in this blog post, Updating vour MySOL Configuration.

7.9. Schema Changes

Traditionally, a schema change in MySQL was a blocking operation - a table had to

be locked for the duration of the ALTER. In MySQL replication, some ALTERs may

lock writes on the master and create replication lag. The reason is MySQL replication

is single-threaded and if the SQL thread is executing an ALTER statement, it won't
execute anything else. It is also important to understand that the slave is able to start
replicating the schema change only after it has completed on the master. This results in
a significant amount of time needed to complete changes on the slave: time needed for
a change on the master plus time needed for a change on the slave.

Luckily, there are ways to perform this operation online:

« Rolling schema update - take one of the slaves out of rotation, execute ALTERs,
bring it back, rinse and repeat until all slaves have been updated. Once that's
done, promote one of the slaves to master, run ALTER on the old master, bring
it back as a slave.

* Online schema changes tools:
» pt-online-schema-change by Percona
* Online Schema Change by Facebook
» gh-ost by GitHub

nin3s 4


http://severalnines.com/blog/clustercontrol-tips-tricks-updating-your-mysql-configuration

Each method has its own pros and cons. More details in this blog post, Become a
MySQL DBA blog series - Common operations - Schema Changes.

7.10. Topology Changes

Replication topology changes and failover processes are common operations, albeit
complex. Changes are usually needed to help scale out, to distribute your database
across multiple regions or data centers, or to perform software/hardware maintenance
operations. The initial setup of a replication topology is simple, but as soon as you start
changing it, things can quickly get complex.

Depending on whether you are running on GTID-based or standard replication with
binlog, the failover steps are different and require close attention. We have discussed
this in detail in this webinar on Replication Topology Changes for MySQL and MariaDB
as well as this blog post - DBA Operations - Replication Topology Changes.

nin3s

47


http://severalnines.com/blog/become-mysql-dba-blog-series-common-operations-schema-changes
http://severalnines.com/blog/become-mysql-dba-blog-series-common-operations-schema-changes
http://severalnines.com/blog/webinar-replay-slides-become-mysql-dba-replication-topology-changes-mysql-and-mariadb
http://severalnines.com/blog/become-mysql-dba-blog-series-common-operations-replication-topology-changes

| |ssues and Troubleshooting

Because it is simple to setup, MySQL Replication is probably the most widely used
mechanism to provide high availability. Unfortunately, it is also somewhat fragile:

Failover is not automatic and has to be performed by somebody who is skilled.

Slaves can easily end up with different data to the master, due to hardware
problems, software bugs or the use of non-deterministic functions. Diverging
datasets on master and slave servers causes replication to stop.

A crashing master can cause corruption of the binary log. When it is restarted,
the slave servers would not be able to continue from the last binary log
position.

GTID-based failover is exposed to errant transaction. We describe this further
down in this tutorial, as well as in this blog.

Slave lag can be a nightmare when your application reads out-of-date data
from a slave.

It is possible to set up two-way replication between two mysqgl servers.
However, ring topologies are not recommended. MySQL Replication currently
does not support any locking protocol between master and slave to guarantee
the atomicity of a distributed updated across two different servers.

8.1. Replication Status

The replication status can only be checked from a replicating slave by using the
following statement:

1

mysql> SHOW SLAVE STATUS\G

dokookokokokokokokokokkokokkokkkokkkkkkkkk 9 oy

3k >k >k %k >k 5k 3k 5k 5k 5k 3k >k >k >k %k %k %k %k >k 5k >k >k %k %k %k ) %k

Slave IO State: Waiting for master to send

event
Master_Host: 192.168.55.111
Master_User: slave
Master_Port: 3306
Connect_Retry: 60
Master_Log File: binlog.000005
Read_Master_Log Pos: 911532980
Relay Log File: relay-bin.000004
Relay Log Pos: 911533144
Relay Master_ Log File: binlog.000005
Slave IO Running: Yes
Slave_SQL_Running: Yes

nin3s

Replicate_Do_DB:
Replicate_Ignore_DB:
Replicate_Do_Table:

48


http://severalnines.com/blog/mysql-replication-and-gtid-based-failover-deep-dive-errant-transactions

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44
45
46
47

48
49
50
51
52
53
54

55

The following status variables are the main indicator that replication works as expected:

AwNpR

nin3s

Replicate_Ignore_Table:
Replicate_Wild_Do_Table:
Replicate_Wild_Ignore_Table:
Last_Errno:

Last_Error:

Skip Counter:
Exec_Master_Log Pos:
Relay_Log Space:

Until Condition:
Until Log File:

Until_Log Pos:
Master SSL Allowed:
Master SSL CA File:
Master SSL _CA_Path:
Master SSL Cert:

Master SSL_Cipher:
Master_SSL_Key:
Seconds_Behind Master:
Master_SSL_Verify Server_Cert:
Last IO Errno:
Last IO Error:
Last _SQL _Errno:

Last _SQL_Error:
Replicate_Ignore_Server_Ids:
Master_Server Id:

Master UUID:

000c29901dfb

Master_Info_File:
SQL_Delay:
SQL_Remaining_Delay:
Slave_SQL_Running_State:

%

0
911532980
911533311
None

%)
No

No

1
a2bac331-a899-11e5-98f0-

/var/lib/mysql/master.info

0

NULL

Slave has read all relay log;

waiting for the slave I/0 thread to update it

Master_Retry_ Count:
Master Bind:

Last_IO _Error_Timestamp:
Last SQL_Error_Timestamp:
Master SSL Crl:
Master SSL Crlpath:
Retrieved Gtid Set:

000c29901dfb:10-1937

Executed Gtid Set:

000c29901dfb:1-1937

Slave_IO _Running:
Slave_SQL_Running:
Seconds_Behind_Master:
Master_Server_Id:

86400

a2bac331-a899-11e5-98f0-

a2bac331-a899-11e5-98f0-

Yes
Yes
%)
1

49



The above indicates the slave’s IO and SQL threads are running, replicating from the
Master server (server-id=1) with no replication lag (where Seconds_Behind_Master is 0).
Other than the abovementioned slave status, you can also use the following statements:

* SELECT @@global.gtid_executed - Shows applied transactions.
« SELECT @@gtid_purged - Shows applied but purged from binary logs already.

8.2. Replication Lag

Replication lag is the number of seconds that the slave is behind the master. If

it happens, your application might read old data from the slave. This somewhat
introduces a deficiency on the application side when retrieving data from a lagging
slave. For example, you might configure the application to retrieve data when Seconds_
Behing_Master is only equal to 0 on that slave. Else, the application falls back on the
master to retrieve the data. ProxySQL can also be configured to keep track of the slave

lag.

ik =
10.0.0.201 i= Node Actions v

Monitor Top Querles Rules Users Variables Scneduler Scripts Node Performance © Add Server

Hoatgroup 10

P Status Port Weight Max Connections Max Raplication Lag Max Latancy
i

10.0.0.201 =

~ ONLINE 3303 1 100 10 o
# Edit ¥ Remove

Hestgroup 20

(roader) Status Fort Weignt IMax Gonnections Max Repication Lag Max Latency

1000201 =

ol v ONLIN 3308 1 100 10 o
# Edit ¥ Remove

10.0.0.202

¥ OHL 3305 1 (i) o 1]
# Edit ¥ Remove 3
10.0.0.205 =

v DNLINE 3305 1 100 0 o
# Edit ¥ Remove
1000304 ~ ¥ ONLINE 3308 1 100 10 0

# Edit ¥ Remove

10.00.203 =

# Edit ¥ Remove

You can decide that given server will not be getting traffic when the replication
lag exceeds "Max Replication Lag” defined for it. Once the lag gets back below the
threshold, ProxySQL will start sending the traffic to that backend again.

MySQL replication works with two threads, IO_THREAD & SQL_THREAD. For IO_
THREAD, the slave:

1. connects to a master,

2. reads binary log events from the master as they come in,

3. copies them over to a local log file called relay log.

While SQL_THREAD, the slave:

1. reads events from a relay log, stored locally on the replication slave (the file that
was written by 1O thread).

2. applies them as fast as possible.

nin3s

50



Whenever replication lag happens, it's important to determine whether it's delaying

on slave IO_THREAD or slave SQL_THREAD. Normally, 1/0O thread would not cause a

big replication delay as it is just reading the binary logs from the master. However,

It depends on the network connectivity and latency between the servers. The slave

I/O thread could be slow because of high bandwidth usage. Usually, when the slave
IO_THREAD is able to read binary logs quickly enough, it copies and piles up the relay
logs on the slave — which is one indication that the slave IO_THREAD is not the culprit of
slave lag.

When the slave SQL_THREAD is the source of replication delays, it is probably because
the queries coming from the replication stream are taking too long to execute on the
slave. This is sometimes due to different hardware between master/slave, different
schema indexes or workload. Moreover, the slave OLTP workload sometimes causes
replication delays because of locking. Take note that replication is single threaded prior
to MySQL 5.6, which would be another reason for delays on the slave’s SQL_THREAD.

8.3. Data Drifting

Though the main purpose of replication is to have exact copies of data across the
replication setup, data drifting can still happen between a MySQL master and its
replicas. This can happen if there is transaction rollback on a non-transactional storage
engine, a non-deterministic statement with statement-based replication, software bugs
or human/application mistakes. It is also necessary to check slave consistency after a
master failover event, as data drifting might happen after a new master is promoted.

You can use Percona Toolkit's pt-table-checksum to perform an online replication
consistency check by executing checksum queries on the master, which produces
different results on replicas that are inconsistent with the master. Then, you can apply
the missing transactions manually or use pt-table-sync to resynchronize the slave.

Using row-based replication (by setting binlog_format=ROW) is also a safe bet to
reduce the risk of data drifting. With row-based replication, the master writes events to
the binary log that indicate how individual table rows are changed. Replication of the
master to the slave works by copying the events representing the row changes to the
slave.

8.4. Errant Transaction

Errant transactions are transactions that are executed directly on a slave in GTID-based
replication. Thus, they only exist on a specific slave. This could be the result of a mistake
e.g, the application wrote to a slave instead of writing to the master or this could be

by design e.g, you need additional tables for reports. It can cause data corruption or
replication error if a slave with an errant transaction is promoted to the new master.
The main issue with errant transactions is that when failing over, the slave may execute
transactions ‘coming from nowhere’ that can silently corrupt your data or break
replication.

If you find an errant transaction on one server, there are two ways to overcome errant
transaction:

« Either commit an empty transaction with the GTID of the errant one on all other
servers;

« Or, remove the corresponding GTID on the offending slave.

nin3s

51



The bottomline is, before a new slave is promoted to be a master, it is necessary to
check for errant transactions. We have covered this topic in detail in this blog post,
MySQL Replication and GTID-based failover - A Deep Dive into Errant Transactions.

8.5. Corrupted Slave

Corrupted slave happens when the relay logs are corrupted. A relay log is a log file
of the binary log events coming from the master via replication 10 thread. In case of
corruption, replication would stop on the slave. There are multiple reasons that could
lead to this problem, it could be network (especially if replicating over unreliable long

distance networks), MySQL bugs on master or slave, hardware problems and few others.

Firstly, verify if the corruption happens on master or slave. A good indicator is if the
other slaves are replicating without error, it's most likely that only the relay log on that
particular slave is corrupted. To fix it, simply re-point the replication on the slave to
Relay_Master_Log_Flle:Exec_Master_Log_Pos:

1 (corrupted slave)> SLAVE STOP;

2 (corrupted slave)> CHANGE MASTER TO master_log file=Relay_
Master_Log File,master_log pos=Exec_Master_Log Pos;

3 (corrupted slave)> SLAVE START;

8.6. Recommendations

» Use Global Transaction Identifier (GTID) based replication for simpler
deployment and failover.

« Use InnoDB storage engine since it provides full transaction capability with
ACID compliance and better crash recovery.

» Replication only flows in one direction, applications only write on the master.

» Deploy a backup master, the master pushes changes to a backup master and to
one or more slaves.

« Use semi-synchronous replication between master and backup master.

« Master sends update to backup master and waits with transaction
commit.

« Backup master gets update, writes to its relay log and flushes to disk.
Backup master then acknowledges receipt of the transaction to the
master.

» Master proceeds with transaction commit.

« Semi-sync replication has a performance impact, but the risk for data
loss is minimized.

« Have only the replication process to make changes on the slaves, so as to
minimize the risk of data conflicts on the slaves. Slaves should therefore be
started in read-only mode. Applications will not be able to modify data directly
on the slaves, but the Replication process will still function on a read-only
server.

nin3s

52


http://severalnines.com/blog/mysql-replication-and-gtid-based-failover-deep-dive-errant-transactions

Replication sends larger packets between the servers, the max_allowed_packet
set to a high value so as to avoid replication errors.

Binary logs need to be available to bring a new slave up to date. Provisioning of
a new slave requires a combination of the last backup, and all transactions that
happened after the backup.

Replication connection parameters should not be placed in the my.cnf file. For
instance, a slave may have its configuration file overwritten, and not know from
what point to continue the replication.

nin3s

53



'm About ClusterControl

ClusterControl is the all-inclusive open source database management system for users
with mixed environments that removes the need for multiple management tools.
ClusterControl provides advanced deployment, management, monitoring, and scaling
functionality to get your MySQL, MongoDB, and PostgreSQL databases up-and-
running using proven methodologies that you can depend on to work. At the core

of ClusterControl is it's automation functionality that let's you automate many of the
database tasks you have to perform regularly like deploying new databases, adding and
scaling new nodes, running backups and upgrades, and more.

® = 4 B [

Backup Monitoring & Deployment & Upgrades & Security &

Management Alerting Scaling Patching Compliance

o .

= Tes & Fa

0 000

gy PEY
Operational Configuration Automatic Recovery Performance Automated

Reporting Management & Repair Management Performance Advisors

'I'Il About Severalnines

Severalnines provides automation and management software for database clusters. We
help companies deploy their databases in any environment, and manage all operational
aspects to achieve high-scale availability.

Severalnines’ products are used by developers and administrators of all skills levels to
provide the full ‘deploy, manage, monitor, scale’ database cycle, thus freeing them from
the complexity and learning curves that are typically associated with highly available
database clusters. Severalnines is often called the “anti-startup” as it is entirely self-
funded by its founders. The company has enabled over 12,000 deployments to date

via its popular product ClusterControl. Currently counting BT, Orange, Cisco, CNRS,
Technicolor, AVG, Ping Identity and Paytrail as customers. Severalnines is a private
company headquartered in Stockholm, Sweden with offices in Singapore, Japan and the
United States. To see who is using Severalnines today visit:

https://www.severalnines.com/company

nin3s



https://www.severalnines.com/company

ninas

B Related Resources

Managing MySQL Replication for High
Availability

This new webinar on Managing MySQL Replication for High
Availability led by Krzysztof Ksigzek, Senior Support Engineer at
Severalnines is part of our ongoing ‘Become a ClusterControl
MySQL DBA' series.

Understanding the Effects of High Latency in
High Availability MySQL and MariaDB Solutions

To insulate our database infrastructure from failures, we build
redundant cluster systems. For instance, MySQL and MariaDB
high availability can be implemented by master-slave as well

as master-master replication solutions. There are a number of
variables that affect our choice solution. In this blog, we will look
into considerations around latency.

How to Manage Replication Failover Processes
for MySQL, MariaDB & PostgreSQL

Watch this webinar replay that gives a detailed overview of
what failover processes may look like in MySQL, MariaDB and
PostgreSQL replication setups. We've covered the dangers
related to the failover process and look at how ClusterControl
manages it as well as how it can be configured for both assisted
and automated failover.

MySQL Replication Blueprint

The MySQL Replication Blueprint whitepaper includes all aspects
of a Replication topology with the ins and outs of deployment,
setting up replication, monitoring, upgrades, performing
backups and managing high availability using proxies.

55


https://severalnines.com/blog/understanding-effects-high-latency-high-availability-mysql-and-mariadb-solutions
https://severalnines.com/blog/understanding-effects-high-latency-high-availability-mysql-and-mariadb-solutions
https://severalnines.com/resources/webinars/how-manage-replication-failover-processes-mysql-mariadb-postgresql
https://severalnines.com/resources/webinars/how-manage-replication-failover-processes-mysql-mariadb-postgresql
https://severalnines.com/resources/whitepapers/mysql-replication-blueprint
https://severalnines.com/webinars/managing-mysql-replication-high-availability
https://severalnines.com/webinars/managing-mysql-replication-high-availability
https://severalnines.com/blog/understanding-effects-high-latency-high-availability-mysql-and-mariadb-solutions
https://severalnines.com/resources/webinars/how-manage-replication-failover-processes-mysql-mariadb-postgresql
https://severalnines.com/resources/whitepapers/mysql-replication-blueprint
https://severalnines.com/webinars/managing-mysql-replication-high-availability

severalninas

This tutorial covers information about MySQL Replication,
with information about the latest features introduced in
5.6, 5.7 and 8.0. There is also a more hands-on, practical
section on how to quickly deploy and manage a
replication setup using ClusterControl.

© 2019 Severalnines AB. All rights reserved. Severalnines and the Severalnines logo(s) are
trademarks of Severalnines AB. Other names may be trademarks of their respective owners.



	1. Introduction
	2. What is MySQL Replication?
	2.1. Replication Scheme
	2.1.1. Asynchronous Replication
	2.1.2. Semi-Synchronous Replication

	2.2. Global Transaction Identifier (GTID)
	2.2.1. Replication in MySQL 5.5 and Earlier
	2.2.2. How GTID Solves the Problem
	2.2.3. MariaDB GTID vs MySQL GTID

	2.3. Multi-Threaded Slave
	2.4. Crash-Safe Slave
	2.5. Group Commit

	3. Topology for MySQL Replication
	3.1. Master with Slaves (Single Replication)
	3.2. Master with Relay Slaves (Chain Replication)
	3.3. Master with Active Master (Circular Replication)
	3.4. Master with Backup Master (Multiple Replication)
	3.5. Multiple Masters to Single Slave (Multi-Source Replication)
	3.6. Galera with Replication Slave (Hybrid Replication)

	4. Deploying a MySQL Replication Setup
	4.1. General and SSH Settings
	4.2. Define the MySQL Servers
	4.3. Define Topology
	4.4. Scaling Out

	5. Connecting Application to the Replication Setup
	5.1. Application Connector
	5.2. Fabric-Aware Connector
	5.3. Reverse Proxy/Load Balancer
	5.3.1. MariaDB MaxScale
	5.3.2. ProxySQL
	5.3.3. HAProxy (Master-Slave Replication)


	6. Failover with ClusterControl
	6.1. Automatic Failover of Master
	6.1.1. Whitelists and Blacklists

	6.2. Manual Failover of Master
	6.3. Failure of a Slave
	6.4. Pre and Post-Failover Scripts
	6.4.1. When Hooks Can Be Useful?
	6.4.1.1. Service Discovery
	6.4.1.2. Proxy Reconfiguration
	6.4.1.3. Additional Logging



	7. Operations - Managing Your MySQL Replication Setup
	7.1. Show Replication Status
	7.2. Start/Stop Replication
	7.3. Promote Slave
	7.4. Rebuild Replication Slave
	7.5. Backup
	7.6. Restore
	7.7. Software Upgrade
	7.8. Configuration Changes
	7.9. Schema Changes 
	7.10. Topology Changes

	8. Issues and Troubleshooting
	8.1. Replication Status
	8.2. Replication Lag
	8.3. Data Drifting
	8.4. Errant Transaction
	8.5. Corrupted Slave
	8.6. Recommendations

	About ClusterControl
	About Severalnines
	Related Resources

