
1

2

3

Table of Contents
1. Introduction 4

2. Backup and recovery 5

3. HA setups 7
 3.1. Master-Slave architectures 7
 3.2. Master-Master architectures 8
 3.2.1. Load Balancing and connection pooling 8

4. Monitoring 9

5. Synopsis 10

6. Automation with ClusterControl 11
 6.1. Deployment 11
 6.2. Import 14
 6.3. Scalability 15
 6.4. Failover 16
 6.5. Load balancing 20
 6.6. Monitoring 22
 6.7. Alerts 24
 6.8. Reports 25
 6.9. Backups 27
 6.10. Topology view 30
 6.11. Integrations 31

7. ChatOps via CCBot 32
 7.1. Command Line 35
 7.1.1. Help 35
 7.1.2. PostgreSQL deploy cluster 36
 7.1.3. PostgreSQL create backup 37
 7.1.4. PostgreSQL cluster status 37
 7.1.5. Jobs status 37

8. Conclusion 39

About ClusterControl 40

About Severalnines 40

Related Resources 41

4

PostgreSQL is an object-relational database management system (ORDBMS) developed
at the University of California at Berkeley Computer Science Department.

It supports a large part of the SQL standard and offers many modern features:
• complex queries
• foreign keys
• triggers
• updateable views
• transactional integrity
• multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding
new:

• data types
• functions
• operators
• aggregate functions
• index methods
• procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed
free of charge by anyone for any purpose, be it private, commercial, or academic.

These features have consolidated the engine in the top 4 of the most used databases.

PostgreSQL offers natively some of the most industry demanded feature , such as
master-slave replication, backup and recovery, transactionality, partitioning.

Anyway, there are still some other demanded features that need to be accomplished by
external tools, such as sharding, master-master setups, monitoring, load balancing and
statistics reporting.

Introduction

Figure 1: PostgreSQL Rank

5

PostgreSQL supports logical and physical backup.

The logical backup, flat text files with the SQL statements necessary to recreate the base
(or part of it) in another environment, can be used for recovery in a different operating
system or architecture, as well as different engine versions. The files are small, as they
do not keep index data, and can be easily compressed.

The physical (binary) backup is basically a copy of the datafiles. The files are not
compatible between operating systems, architecture or engine version, but they can be
faster to recover.

They also keep a flag of the last executed transaction, so the backup knows which
transactions need to be applied during a recovery.

For logical backups we have the pg_dump and pg_dumpall utilities, that allows us to
backup one, several or all the databases in our installation. pg_dumpall will also include
the users and tablespaces.

For pg_dump we have several flags to enable the extraction of the schema only, only
the data, particular tables or objects, as well as enable different format and compression
options.

A simple example of dumping and loading a database can be, to dump a database
called mydb into a SQL-script file:

To reload such a script into a (freshly created) database named newdb:

One more advanced example can be something like, to dump all schemas whose
names start with east or west and end in gsm, excluding any schemas whose names
contain the word test:

For physical backups of a running PostgreSQL database cluster, we can use pg_
basebackup. These are taken without affecting other client connections to the database,
and can be used both for point-in-time recovery and as the starting point for a log
shipping or streaming replication standby servers.

To create a base backup of the server at mydbserver and store it in the local directory /
usr/local/pgsql/data:

Backup and recovery

1 $ pg_dump mydb > db.sql

1 $ psql -d newdb -f db.sql

1 $ pg_dump -n ‘east*gsm’ -n ‘west*gsm’ -N ‘*test*’ mydb >
db.sql

1 $ pg_basebackup -h mydbserver -D /usr/local/pgsql/data

6

For more details on the PostgreSQL backup facilities please check:
• Blog: Become a PostgreSQL DBA - Logical & Physical PostgreSQL Backups
• Blog: Top Backup Tools for PostgreSQL

Point in Time Recovery implies the ability to recover a database up to a given point in
time. It can be useful to recover from a logical error like delete data or drop a table, or
it can be used for example with auditing purposes, to check the state of a database at a
given point.

For being able to perform a PITR, we need a backup previous to the point until we want
to recover, and all the logs from the time the backup ended until that given point. The
process will apply all the modifications made until that specified point, and then rollback
the uncommitted ones.

For more details on PITR and how to perform it please check: Blog: Become a
PostgreSQL DBA: Point-in-Time Database Restoration.

https://severalnines.com/blog/become-postgresql-dba-logical-physical-postgresql-backups
https://severalnines.com/blog/top-backup-tools-postgresql
https://severalnines.com/blog/become-postgresql-dba-point-time-database-restoration
https://severalnines.com/blog/become-postgresql-dba-point-time-database-restoration

7

Database servers can work together to allow a second server to take over quickly if the
primary server fails (high availability), or to allow several computers to serve the same
data (load balancing).

For HA configuration we can have several architectures, but the basic ones would be
master-slave and master-master architectures.

3.1. Master-Slave architectures
These architectures enable us to maintain an master database with one or more
standby servers ready to take over operations if the primary server fails. These standby
databases will remain synchronized (or almost synchronized) with the master.

The replication between the master and the slaves can be made via SQL statements
(logical standbys) or via the internal data structure modifications (physical standbys).

PostgreSQL uses a stream of write-ahead log (WAL) records to keep the standby
databases synchronized. If the main server fails, the standby contains almost all of the
data of the main server, and can be quickly made the new master database server. This
can be synchronous or asynchronous and can only be done for the entire database
server.

Setting up streaming replication is a task that requires some steps to be followed
thoroughly. For those steps and some more background on this subject, please see:
Become a PostgreSQL DBA - How to Setup Streaming Replication for High Availability.

From version 10, postgresql includes the option to setup logical replication.

Logical replication allows a database server to send a stream of data modifications
to another server. PostgreSQL logical replication constructs a stream of logical data
modifications from the WAL. Logical replication allows the data changes from individual
tables to be replicated. It doesn’t require a particular server to be designated as a
master or a replica but allows data to flow in multiple directions.

You can find more information regarding logical replication: Blog: An Overview of
Logical Replication in PostgreSQL.

To effectively ensure high availability, it is not enough to have a master-slave
architecture. We also need to enable some automatic form of failover, so if something
fails we can have the smallest possible delay in resuming normal functionality.

PostgreSQL does not include an automatic failover mechanism to identify failures on
the master database and notify the salve to take ownership, so that will require a little
bit of work on the DBA’s side. You should work on a script that includes the pg_ctl
promote command, that will promote the slave as a new master. There are also some
third party tools for this automation. Many such tools exist and are well integrated

HA setups

https://severalnines.com/blog/become-postgresql-dba-how-setup-streaming-replication-high-availability
https://severalnines.com/blog/overview-logical-replication-postgresql
https://severalnines.com/blog/overview-logical-replication-postgresql

8

with the operating system facilities required for successful failover, such as IP address
migration.

After a failover happens, you need to modify your application accordingly to work
with the new master. You will also have only one server working, so re-creation of
the master-slave architecture needs to be done, so we get back to the same normal
situation that we had before the issue.

3.2. Master-Master architectures
This architecture provides a way of minimizing the impact of an error in one of the
nodes, as the other node can take care of all the traffic, maybe slightly affecting the
performance, but never losing functionality. It is also used to accomplish (and maybe
this is even a more interesting point) horizontal scalability (scale-out), opposite to the
concept of vertical scalability where we add more resources to a server (scale-up).

For implementing this architecture, you will need to use external tools, as this feature is
not (yet) natively supported by PostgreSQL.

You must be very careful when choosing a solution for implementing master-master, as
there are many different products. A lot of them are still “green” , with few serious users
or success cases. Some other projects have, on the other hand, been abandoned, as
there are no active maintainers.

For more information on the available tools please refer to: Blog: Top PG Clustering HA
Solutions for PostgreSQL.

3.2.1. Load Balancing and connection pooling
There are several load balancer tools that can be used to manage the traffic from
your application to get the most of your database architecture. In the same way, there
are some others that can help you manage the way the application connects to the
database, by pooling these connections and reusing them between different requests.

There are some products that are used for both purposes, like the well known
pgpool, and some others that will focus in only one of these features, like pgbouncer
(connection pooling) and HAProxy (used for load balancing).

https://severalnines.com/blog/top-pg-clustering-ha-solutions-postgresql
https://severalnines.com/blog/top-pg-clustering-ha-solutions-postgresql
https://severalnines.com/blog/guide-pgpool-postgresql-part-one
https://severalnines.com/blog/guide-using-pgbouncer
https://severalnines.com/blog/postgresql-load-balancing-using-haproxy-keepalived

9

When working with database systems, you should be able to monitor them. That will
enable you to identify trends, plan for upgrades or improvements or react effectively to
any problems or errors that may arise.

This activity actually involves several steps, like gathering metrics, analyzing, computing
statistics and generating summaries and graphs regarding the performance or the
capacity of a system, as well as generating alerts in case of unexpected problems or
failures which require immediate attention or action.

There are several things to monitor, like database statistics that live in the metadata
tables or operating system metrics (you can check some of the most importants metrics
here). There are also a number of notification and alerting tools that can react on
events. This makes the monitoring and alerting setup a complex and time consuming
task, as you will have to play with a lot of information and external tools. You have to
manage this carefully, and find that balance where you get the necessary information
to keep your system under control, but avoid getting overloaded by alarms and
notifications.

Monitoring

https://severalnines.com/blog/key-things-monitor-postgresql-analyzing-your-workload
https://severalnines.com/blog/best-alert-and-notification-tools-postgresql

10

We tried to briefly describe some of the challenges that you may face when managing
PostgreSQL. Setting an HA environment, ensuring a disaster recovery strategy,
managing and optimizing the load of your database and effectively monitoring your
system are not out the box tasks. For a well managed system, you need to investigate
and experiment with the procedures as they require a certain level of knowledge to be
implemented in a stable manner.

We will now look into ClusterControl, that manages a good deal of these tasks and can
help accomplish them from a unified interface.

Synopsis

11

ClusterControl provides automation for most of the PostgreSQL tasks described above,
in a centralized and user-friendly way. With this system you will be able to easily
configure things that, manually, will take time and effort. We will now review some of its
main features.

6.1. Deployment
ClusterControl itself can be installed on a dedicated VM or host using an installer script.
It is an agentless management and monitoring system, and requires SSH access to the
database hosts.

Once we enter the ClusterControl interface, the first thing to do is deploy a new cluster
or import an existing one.

To perform a deployment, simply select the option “Deploy Database Cluster” and
follow the instructions that appear.

Automation with
ClusterControl

Figure 2: ClusterControl PostgreSQL Deploy 1

https://severalnines.com/product/clustercontrol/
https://severalnines.com/product/clustercontrol/for_postgresql
https://severalnines.com/download-clustercontrol-database-management-system

12

When selecting PostgreSQL, we must specify User, Key or Password and port to connect
by SSH to our servers. We also need the name for our new cluster and if we want
ClusterControl to install the corresponding software and configurations for us.

Figure 3: ClusterControl PostgreSQL Deploy 2

Figure 4: ClusterControl PostgreSQL Deploy 3

13

After setting up the SSH access information, we must enter the data to access our
database.

We can also specify which repository to use.

In the next step, we need to add our servers to the cluster that we are going to create.

When adding our servers, we can enter IP or hostname. For the latter, we must have
a DNS server or have added our PostgreSQL servers to the local resolution file (/etc/
hosts) of our ClusterControl, so it can resolve the corresponding name that you want to
add.

For our example we will create a cluster in PostgreSQL with 3 servers, one master and
two slaves.

We can monitor the status of the creation of our new cluster from the ClusterControl
activity monitor.

Once the task is finished, we can see our cluster in the main ClusterControl screen.

Figure 5: ClusterControl PostgreSQL Deploy 4

Figure 6: ClusterControl PostgreSQL Deploy 5

https://severalnines.com/docs/user-guide/index.html#repositories

14

As we can see in the image, once we have our cluster created, we can perform several
tasks on it, like adding a load balancer (HAProxy) or a new replica.

6.2. Import
We also have the option to manage an existing cluster by importing it into
ClusterControl.

First, we must enter the SSH access credentials to our servers.

Figure 7: ClusterControl Cluster View

Figure 8: ClusterControl PostgreSQL Import 1

15

Then we enter the access credentials to our database, the basedir and the version.
We add the nodes by IP or hostname, in the same way as when we deploy, and
press on Import. Once the task is finished, we are ready to manage our cluster from
ClusterControl.

6.3. Scalability
As we saw earlier in figure 7, we can add slaves to our topology very easily.

If we go to cluster actions and select “Add Replication Slave”, we can either create a new
replica from scratch, or add an existing PostgreSQL database as a replica.

Figure 9: ClusterControl PostgreSQL Import 2

16

As you can see in the image, we can have our new replica running in a few minutes.

In this way we can add as many replicas as we want, and spread read traffic between
them using a load balancer, which we can also implement with ClusterControl.

6.4. Failover
ClusterControl manages failover on our replication setup. It detects master failures and
promotes a slave with the most current data as new master. It also fails over the rest
of the slaves to replicate from the new master. As for client connections, it leverages 2
main tools for the task: HAProxy and Keepalived.

HAProxy is a load balancer that distributes traffic from one origin to one or more
destinations and can define specific rules and/or protocols for this task. If any of the
destinations stops responding, it is marked as offline, and the traffic is sent to the rest
of the available destinations. This prevents traffic from being sent to an inaccessible
destination and prevents the loss of this information by directing it to a valid
destination.

Keepalived allows you to configure a virtual IP within an active/passive group of
servers. This virtual IP is assigned to an active “Main” server. If this server fails, the IP is
automatically migrated to the “Secondary” server that was found to be passive, allowing
it to continue working with the same IP in a transparent way for our systems.

Figure 10: ClusterControl PostgreSQL Import 3

17

Suppose we have the following topology:

We have 2 load balancers (HAProxy) configured with Keepalived, in front of 3
PostgreSQL database nodes (1 master and 2 slaves).

As a first case, let’s see what happens if our master database fails.

Having the “Autorecovery” option ON, our ClusterControl will perform an automatic
failover as well as notify us of the problem. In this way, our systems can recover in
seconds, and without our intervention.

To perform the failover, two things are taken into account, one is the blacklist or
whitelist (if it is configured). If any slave is in blacklist, it will not be taken into account
to be promoted to master. The nodes that are in the whitelist are candidates for master
promotion.

Figure 11: ClusterControl PostgreSQL Failover Topology 1

Figure 12: ClusterControl PostgreSQL Failover Topology 2

18

The second thing to keep in mind is the most advanced slave, for this ClusterControl
checks the pg_current_xlog_location (PostgreSQL 9+) or pg_current_wal_lsn
(PostgreSQL 10+) depending on the version of our database.

Once it has determined what is going to be our new master, ClusterControl will promote
it and at this point our load balancer comes into play.

HAProxy is configured with two different ports, one read-write and one read-only.

In our read-write port, we have our master server as online and the rest of our nodes
as offline, and in the read-only port we have both the master and the slaves online. In
this way we can balance the reading traffic between our nodes but we make sure, that
at the time of writing, the read-write port will be used, writing in the master that is the
server that is online.

When HAProxy detects that one of our nodes, either master or slave, is not accessible,
it automatically marks it as offline and does not take it into account for sending traffic
to it. This check is done by healthcheck scripts that are configured by ClusterControl
at time of deployment. These check whether the instances are up, whether they are
undergoing recovery, or are read-only.

When ClusterControl promotes a slave to master, our HAProxy marks the old master as
offline (for both ports) and puts the promoted node online (in the read-write port). In
this way, our systems continue to operate normally.

Figure 13: ClusterControl PostgreSQL Failover HAProxy 1

19

Note that if we manage to recover our old failed master, it will NOT be re-introduced
automatically to the cluster, neither as a master nor as a slave. We need to do it
manually. One reason for this is that, if our replica was delayed at the time of the
failure, if we add the old master to the cluster either as a master or as a slave, it would
mean loss of information or inconsistency of data across nodes. We might also want
to analyze the issue in detail, but when adding it to our cluster, we would possibly lose
diagnostic information.

Another important detail is that, if failover fails, no further attempts are made, manual
intervention is required to analyze the problem and perform the corresponding actions.
This is to avoid the situation where ClusterControl, as the high availability manager, tries
to promote the next slave and the next one. There might be a problem, and we do not
want to make things worse by attempting multiple failovers.

To add our old master to the cluster, we must go to the actions of the node and select
“Rebuild Replication Slave”. Once added to the cluster, we can promote it to master by
selecting the option “Promote Slave”.

As a second case, let’s see what happens if our active load balancer fails.

If our active HAProxy, which is assigned a Virtual IP address to which our systems
connect, fails, Keepalived migrates this IP to our passive HAProxy automatically. This
means that our systems are then able to continue to function normally.

Let’s see an example.

Here is HAProxy server (active keepalived node):

Figure 14: ClusterControl PostgreSQL Failover HAProxy 2

1 $ ip addr
2 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

pfifo_fast state UP qlen 1000
3 inet 192.168.100.12/24 brd 192.168.100.255 scope global

eth0
4 valid_lft forever preferred_lft forever
5 inet 192.168.100.13/32 scope global eth0
6 valid_lft forever preferred_lft forever

20

As you can see, we have 2 differents IP assigned. The second one is our Virtual IP
Address.

We can check this with the following command:

And here is HAProxy2 server (passive keepalived node):

We have only one IP, because this server is the passive keepalived node.

If you have any issue with HAProxy active node:

And you check the IP address of HAProxy2 again:

Now, our Virtual IP is in HAProxy2.

Once our active HAProxy is recovered, the virtual IP is reassigned to the original active
server and our current active server returns to its passive role.

6.5. Load balancing
Returning to figure 7, if we select “Add Load Balancer” or, from the cluster view, we go to
Manage -> Load Balancer, we can add load balancers to our database topology.

1 $ grep “virtual_ipaddress” -A1 /etc/keepalived/keepalived.
conf

2 virtual_ipaddress {
3 192.168.100.13 # the virtual IP

1 $ shutdown -h now
2 Connection to haproxy closed by remote host.

1 $ ip addr
2 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

pfifo_fast state UP qlen 1000
3 inet 192.168.100.15/24 brd 192.168.100.255 scope global

eth0
4 valid_lft forever preferred_lft forever

1 $ ip addr
2 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

pfifo_fast state UP qlen 1000
3 inet 192.168.100.15/24 brd 192.168.100.255 scope global

eth0
4 valid_lft forever preferred_lft forever
5 inet 192.168.100.13/32 scope global eth0
6 valid_lft forever preferred_lft forever

21

We could see that, the configuration to create our new load balancer is very simple. We
only need to add IP/Name, port, policy and the nodes we are going to use.

Also, as we saw earlier in the failover, we can add two load balancers and add
keepalived to them, which allows us to have an automatic failover of our load balancer
in case of failure.

Keepalived uses a virtual IP, and migrates it from one load balancer to another in case
of failure, so our setup can continue to function normally.

Figure 15: ClusterControl PostgreSQL Load Balancer

Figure 16: ClusterControl PostgreSQL Keepalived

22

In the example we discussed, our topology would be as follows (using the topology
view in ClusterControl).

6.6. Monitoring
ClusterControl allows us to monitor our servers in real time. We will have graphs with
basic data such as CPU, Network, Disk, RAM, IOPS, as well as database metrics collected
from the PostgreSQL instances. Database queries can be viewed from the Query
Monitor.

Figure 17: ClusterControl PostgreSQL Topology

Figure 18: ClusterControl PostgreSQL Cluster Overview

23

In this way, we can have our cluster fully monitored, without adding additional tools or
utilities.

Figure 19: ClusterControl PostgreSQL Node Overview

Figure 20: ClusterControl PostgreSQL Query Monitor

Figure 21: ClusterControl PostgreSQL DB Performance

24

6.7. Alerts
In the same way that we enable monitoring from ClusterControl, we can also setup
alerts, which inform us of events in our cluster.

These alerts are configurable, and can be personalized as needed.

We can see the predefined advisors in Cluster -> Performance -> Advisors.

As we mentioned, we can easily configure our own advisors, as seen in figure 24.

We can check our custom advisors in Cluster -> Manage -> Custom Advisors.

Figure 22: ClusterControl PostgreSQL Alarms

Figure 23: ClusterControl PostgreSQL Advisors

25

6.8. Reports
As IT infrastructure plays a key role in the business, it is important to understand how it
is evolving with time. From a database standpoint, one would keep track of any change
or behavior to the database systems - are we having new peaks in traffic, how are the
databases growing, will we be running out of disk space, and so on. With current and
historical data, we can generate a history of the state of our systems for analysis.

ClusterControl has the ability to generate reports automatically, and store or send them
by mail.

Figure 24: ClusterControl PostgreSQL Custom Advisors

26

As you can see in figure 25, ClusterControl has several types of reports to generate,
each one with specific information.

If we look at figure 26, we can see an example of a report generated with
ClusterControl, that contains information about one of our nodes.

Figure 25: ClusterControl PostgreSQL Create Report

27

6.9. Backups
We have already discussed the importance of having backups, either for disaster
recovery or to consult historical information that is not required to have online.

ClusterControl provides the functionality either to generate an immediate backup or to
schedule one, and automate the task in a simple and fast way.

We can choose between two backup methods, pgdump (logical) and pg_basebackup
(binary). We can also specify where to store the backups (on the database server, on the
ClusterControl server or in the cloud) and the compression level.

Figure 26: ClusterControl PostgreSQL Node Report

28

In the next step we can encrypt our backup and specify the retention period.

If we selected the option “Upload Backup to the cloud” in the previous step, in the next,
we can choose between 3 of the main cloud providers - Amazon Web Services, Google
Cloud or Microsoft Azure.

Figure 27: ClusterControl PostgreSQL Create Backup 1

Figure 28: ClusterControl PostgreSQL Create Backup 2

29

When selecting any of them, we will be asked for the information that corresponds to
upload the backup to our cloud.

Figure 29: ClusterControl PostgreSQL Create Backup 3

Figure 30: ClusterControl PostgreSQL Create Backup 4

30

When scheduling a backup, in addition to select the options mentioned above, we also
need to specify when these backups will be made and how often.

6.10. Topology view
A very interesting feature implemented by ClusterControl is the topology view.

To use it we must go to Cluster -> Topology. It allows us to visualize our database
topology and load balancers, and check the status of our servers and replicas. We can
even perform actions on our nodes from there, like recreating a replica, promoting a
node to master or restart a node. To reconstruct a replica, we can also simply drag one
of our nodes over the master and, within few seconds, we can have our reconstructed
replica.

Figure 31: ClusterControl PostgreSQL Scheduled Backup

31

6.11. Integrations
ClusterControl allows us to integrate the tool with different services such as PagerDuty
or Slack.

In this way we can receive our events in the tools we use daily, in order to centralize our
tasks. In the same way we can manage our ClusterControl from external services, such
as Slack.

Figure 32: ClusterControl PostgreSQL Topology View

Figure 33: ClusterControl PostgreSQL Integrations

32

CCBot is a chatbot that use the ClusterControl APIs to execute request on your clusters.
You will be able to run administration tasks, for example, create backups, read logs,
deploy clusters, as well as keep your team up to date on the status of your clusters,
jobs and backups. It supports most of the major chat services like Slack, Flowdock and
Hipchat.

CCBot is integrated with s9s command line, so you have several commands to use with
this tool.

To install CCBot, once we have installed ClusterControl, we must execute the following
script:

We select which adapter we want to use, in our example we will select Slack.

It will then ask us for some information, such as an email, a description, the name we
will give to our bot, the port, the API token and the channel to which we want to add it.

To obtain the API token, we must go to our Slack -> Apps (On the left side of our Slack
window), we look for Hubot and select Install.

ChatOps via CCBot

1 $ /var/www/html/clustercontrol/app/tools/install-ccbot.sh

1 -- Supported Hubot Adapters --
2 1. slack
3 2. hipchat
4 3. flowdock
5
6 Select the hubot adapter to install [1-3]: 1

1 ? Owner (User <user@example.com>)
2 ? Description (A simple helpful robot for your Company)
3 Enter your bot’s name (ccbot):
4 Enter hubot’s http events listening port (8081):
5 Enter your slack API token:
6 Enter your slack message room (general):

https://github.com/severalnines/ccbot
https://severalnines.com/docs/components.html#id5
https://asciinema.org/a/120091

33

We enter the Username, which must match our bot name.

In the next window, we can see the API token to use.

Finally, to be able to use all the s9s command line functions with CCBot, we must create
a user from ClusterControl:

We can now use our CCBot from Slack.

Figure 34: ClusterControl PostgreSQL Hubot

Figure 35: ClusterControl PostgreSQL API Token

1 Enter your slack API token: xoxb-111111111111-
XXXXXXXXXXXXXXXXXXXXXXXX

1 CCBot installation completed!

1 $ s9s user --create --cmon-user=cmon --group=admins --con-
troller=”https://localhost:9501” --generate-key cmon

https://severalnines.com/blog/how-use-s9s-command-line-interface-clustercontrol

34

Some examples of commands:

If we try to use CCBot from a Slack channel, we must add “@ccbot_name” at the
beginning of our command:

Figure 36: ClusterControl PostgreSQL CCBot

1 $ s9s --help

1 $ s9s cluster --list --long

1 $ s9s node --list --long

1 $ s9s job --list

1 @ccbot s9s backup --create --backup-method=xtrabackupfull
--cluster-id=1 --nodes=10.0.0.5:3306 --backup-directory=/
storage/backups

1 $ s9s backup --create --backup-method=<backup meth-
od> --cluster-id=<cluster id> --nodes=<list of node:port>
--backup-directory=<backup directory>

35

The CCBot makes it easier for the users, mainly the ones that are not very used to work
with the command line, to handle ClusterControl, as it is fully integrated with the tools
they handle on a daily basis.

7.1. Command Line
ClusterControl includes a tool called s9s, which allows us to perform administration
tasks, monitoring, implementation, and several tasks that we have already seen,
from the command line. In this way, we can easily integrate ClusterControl with the
automation tools that we currently have, such as Puppet or Chef, without the need of
using the UI.

Next we will see some examples of tasks that we can perform with this tool.

7.1.1. Help

Note

If we have the following error when wanting to run the
CCBot installer in our ClusterControl:

We must update the version of nodejs package.

1 $ s9s job --list

1 $ s9s --help
2
3 Usage:
4 s9s COMMAND [OPTION...]
5
6 Where COMMAND is:
7 account - to manage accounts on clusters.
8 backup - to view, create and restore database backups.
9 cluster - to list and manipulate clusters.
10 job - to view jobs.
11 maint - to view and manipulate maintenance periods.
12 metatype - to print metatype information.
13 node - to handle nodes.
14 process - to view processes running on nodes.
15 script - to manage and execute scripts.
16 server - to manage hardware resources.
17 user - to manage users.
18
19 Generic options:
20 --help Show help message and exit.
21 -v, --verbose Print more messages than nor-

mally.

https://nodejs.org/en/download/package-manager/

36

7.1.2. PostgreSQL deploy cluster
The following command deploys a setup of 3 PostgreSQL nodes in version 10. The
name of the new cluster will be Postgres_S9S.

22 -V, --version Print version information and
exit.

23 -c, --controller=URL The URL where the controller is
found.

24 -P, --controller-port INT The port of the controller.
25 --rpc-tls Use TLS encryption to control-

ler.
26 -u, --cmon-user=USERNAME The username on the Cmon sys-

tem.
27 -p, --password=PASSWORD The password for the Cmon user.
28 --private-key-file=FILE The name of the file for authen-

tication.
29
30 Formatting:
31 --batch No colors, no human readable,

pure data.
32 --color=always|auto|never Sets if colors should be used

in the output.
33 --config-file=PATH Set the configuration file.
34 --date-format=FORMAT The format of the dates print-

ed.
35 -l, --long Print the detailed list.
36 --no-header Do not print headers.
37 --only-ascii Do not use UTF8 characters.
38 --print-json Print the sent/received JSon

messages.
39
40 Job related options:
41 --log Wait and monitor job messages.
42 --recurrence=CRONTABSTRING Timing information for recur-

ring jobs.
43 --schedule=DATE&TIME Run the job at the specified

time.
44 --timeout=SECONDS Timeout value for the entire

job.
45 --wait Wait until the job ends.

1 $ s9s cluster --create --cluster-type=postgresql --ven-
dor=’default’ --nodes=”10.0.0.11;10.0.0.12;10.0.0.13” --pro-
vider-version=10 --db-admin-passwd=’pa$$word’ --os-user=root
--cluster-name=’Postgres_S9S’ --wait

2
3 Creating PostgreSQL Cluster
4 Job 3564 RUNNING [██] 15% Installing helper

packages

37

7.1.3. PostgreSQL create backup
The following command creates a backup with the pgdump method, from node
10.0.0.11, from our Postgres_S9S cluster and saves it in / root / backups.

7.1.4. PostgreSQL cluster status
This command shows us the status of the Postgres_S9S cluster.

We can also see a list of all our created clusters:

7.1.5. Jobs status
With the following commands, we can list our current jobs, as well as view the status
and the log for each one.

1 $ s9s backup --create --backup-method=pgdump --clus-
ter-name=’Postgres_S9S’ --nodes=10.0.0.11 --backup-directo-
ry=/root/backups/ --wait

2
3 Create pgdump Backup
4 Job 3568 RUNNING3 [█] ---% Job is running

Figure 37: ClusterControl PostgreSQL s9s Cluster Status

1 $ s9s cluster --list --long

1 $ s9s job --list
2 ID CID STATE OWNER GROUP CREATED RDY

TITLE
3 3563 0 FAILED cmon admins 19:40:30

7% Creating PostgreSQL Cluster
4 3564 0 RUNNING cmon admins 19:50:10

15% Creating PostgreSQL Cluster

38

You can check the list of available commands in the documentation.

1 $ s9s job --log --job-id=3564
2 10.0.0.11:5432: Installing new node.
3 10.0.0.11:5432: Setting SELinux in permissive mode.
4 10.0.0.11:5432: Disabling firewall.
5 10.0.0.11:5432: Tuning OS parameters.
6 10.0.0.11:5432: Setting vm.swappiness = 1.
7 10.0.0.11:5432: Installing helper packages.
8 10.0.0.11: Upgrading nss.
9 10.0.0.11: Upgrading ca-certificates.
10 10.0.0.11: Installing net-tools.

1 $ s9s job --wait --job-id=3564
2 Creating PostgreSQL Cluster
3 Job 3564 RUNNING [██] 15% Installing helper

packages

https://severalnines.com/docs/components.html#id5

39

In this Whitepaper, we went though some of the challenges that may arise when
administering a PostgreSQL database. We reviewed some of the most important tasks
that an administrator need to handle, and we included some detailed links on how to
effectively handle each of them.

From this it is apparent that, without a centralized tool, we will need to use a number
of differents tools, which can be time consuming and hard to manage. After reviewing
these challenges we introduced ClusterControl as a single platform to automate these
tasks. The aim of this was for you to be able to compare how much time and effort
can be saved, as well as how the risks can be mitigated by the usage of a unified
management platform.

Conclusion

40

ClusterControl is the all-inclusive open source database management system for
users with mixed environments that removes the need for multiple management
tools. ClusterControl provides advanced deployment, management, monitoring, and
scaling functionality to get your MySQL, MongoDB, and PostgreSQL databases up-
and- running using proven methodologies that you can depend on to work. At the core
of ClusterControl is it’s automation functionality that let’s you automate many of the
database tasks you have to perform regularly like deploying new databases, adding and
scaling new nodes, running backups and upgrades, and more. Severalnines provides
automation and management software for database clusters. We help companies
deploy their databases in any environment, and manage all operational aspects to
achieve high-scale availability.

Severalnines provides automation and management software for database clusters. We
help companies deploy their databases in any environment, and manage all operational
aspects to achieve high-scale availability.

Severalnines’ products are used by developers and administrators of all skills levels to
provide the full ‘deploy, manage, monitor, scale’ database cycle, thus freeing them from
the complexity and learning curves that are typically associated with highly available
database clusters. Severalnines is often called the “anti-startup” as it is entirely self-
funded by its founders. The company has enabled over 12,000 deployments to date
via its popular product ClusterControl. Currently counting BT, Orange, Cisco, CNRS,
Technicolor, AVG, Ping Identity and Paytrail as customers. Severalnines is a private
company headquartered in Stockholm, Sweden with o ces in Singapore, Japan and the
United States. To see who is using Severalnines today visit:

https://www.severalnines.com/company

About Severalnines

About ClusterControl

https://www.severalnines.com/company

41

ClusterControl for PostgresSQL
ClusterControl provides management and monitoring for
PostgreSQL deployments including replication and configuration
management.

Learn more

Become a PostgreSQL DBA Blog Series
Read our popular blog series on how to become a PostgreSQL
DBA: we cover everything from deployment and monitoring
via management through to scaling your PostgreSQL database
setups.

Read blogs

Become a ClusterControl DBA Blog Series
Learn everything you need to know about ClusterControl, the
all-inclusive database management system for open source
databases, and how to best administer open source databases.

Read blogs

Related Resources

https://severalnines.com/product/clustercontrol/for_postgresql
https://severalnines.com/blog?series=690
https://severalnines.com/blog?series=691

42

	1. Introduction
	2. Backup and recovery
	3. HA setups
	3.1. Master-Slave architectures
	3.2. Master-Master architectures
	3.2.1. Load Balancing and connection pooling

	4. Monitoring
	5. Synopsis
	6. Automation with ClusterControl
	6.1. Deployment
	6.2. Import
	6.3. Scalability
	6.4. Failover
	6.5. Load balancing
	6.6. Monitoring
	6.7. Alerts
	6.8. Reports
	6.9. Backups
	6.10. Topology view
	6.11. Integrations

	7. ChatOps via CCBot
	7.1. Command Line
	7.1.1. Help
	7.1.2. PostgreSQL deploy cluster
	7.1.3. PostgreSQL create backup
	7.1.4. PostgreSQL cluster status
	7.1.5. Jobs status

	8. Conclusion
	About ClusterControl
	About Severalnines
	Related Resources

