
1

2

3

Table of Contents
Introduction						 4

Considerations for administering MongoDB		 5
Built-in Redundancy		 5

	 Scalability			 6
	 Arbiters 7

Delayed Replica Set Members		 8
	 Backups 8
	 Monitoring			 8
	 Synopsis			 9

Automation with ClusterControl					 10
Deployment			 10
Backup & Restore			 14
Monitoring			 16
MongoDB Advisors			 17
Integrations			 19
Command-Line Access			 19

22

 23

 23

				

 24

4

MongoDB is the world’s leading NoSQL database server, and—per DBengine’s ranking,
the most widely-known ranking in the database industry—the 5th database server
overall in terms of popularity.

MongoDB is a document-oriented database server, using JSON-formatted documents
for data rather than the columns and rows of the table structure known to any relational
database administrator. This structure allows a flexibility that is difficult to obtain in
current relational databases, and is behind the “schema-less” nature of MongoDB. A
“collection”, as the MongoDB equivalent of a relational database table is known, does
not impose a specific structure on its documents. Practically speaking, this means—
among other benefits—that each document in the collection can have differing fields,
and a field that exists in one document in the collection need not exist in another. The
JSON format also brings embedded arrays, and the ability to index on any attribute
among other features.

Introduction

Figure 1. Source: http://db-engines.com/ranking

http://db-engines.com/ranking

5

Built-in Redundancy
A key feature of MongoDB is its built-in redundancy, in the form of Replication. If you
have two or more data nodes, they can be configured as a replica set, in which all data
written to the Primary node, is replicated in near real time to the secondary nodes,

ensuring multiple copies of the data. In the case of Primary failover, the remaining
nodes in the replica set conduct an election and promote the winner to be Primary,
a process that typically takes 2-3 seconds, and writes to the replica set can resume.
MongoDB also uses a journal for faster, safer writes to the server or replica set, and
also employs a “write concern” method through which the level of write redundancy is
configured.

To manually deploy a replica set, the high-level steps are as follows:
1.	 Allocate a single physical or virtual host for each database node, and install the

MongoDB command line client on your desktop. For a redundant replica set
configuration, a minimum of three nodes are required, at least two of which will
be data nodes. One node in the replica set may be configured as an arbiter:
this is a mongod process configured only to make up a quorum by providing a
vote in the election of a Primary when required. Data is not replicated to arbiter
processes.

2.	 Install MongoDB on each node. Some Linux distributions include MongoDB
Community Edition, but be aware that these may not include the latest versions.
MongoDB Enterprise is available only by download from MongoDB’s website.
Similar functionality to MongoDB Enterprise is also available via Percona Server
for MongoDB, a drop-in replacement for MongoDB Enterprise or Community
Edition.

3.	 Configure the individual mongod.conf configuration files for your replica set,

Considerations for
administering MongoDB

Primary

Secondary Arbiter
(write only)

Heartbeat

Replic
atio

n

Figure 2. MongoDB Replica Set

6

using the “replication parameter”. If you will use a key file for security, configure
this now also. Note that using key file security also enables role-based
authentication, so you will also need to add users and roles to use the servers.
Restart the mongod process on each server.

4.	 Ensure connectivity between nodes. You must ensure that MongoDB replica
set nodes can communicate with each other on port 27017, and also that your
client(s) can connect to each of the replica set nodes on the same port.

5.	 Using the MongoDB command line client, connect to one of the servers,
and run rs.initiate() to initialise your replica set, followed by rs.add() for each
additional node. rs.conf() can be used to view the configuration.

While these steps are not as complex as deploying and configuring a MongoDB
sharded cluster, or sharding a relational database, they can be onerous and prone to
error, especially in larger environments.

Scalability
MongoDB is frequently referred to as “web scale” database software, due to its capacity
for scaling horizontally. Like relational databases, it is possible to scale MongoDB
vertically, simply by upgrading the physical host on which is resides with more CPU
cores, more RAM, faster disks, or even increased bus speed. Vertical scaling has its limits
however, both in terms of cost-benefit ratio and diminishing returns, and of technical
limitation. To address this, MongoDB has an “auto-sharding” feature, that allows
databases to be split across many hosts (or replica sets, for redundancy). While sharding
is also possible on relational platforms, unless designed for at database inception, this
requires major schema and application redesign, as well as client application redesign,
making this a tedious, time-consuming, and error-prone process.

MongoDB sharding works by introducing a router process, through which clients
connect to the sharded cluster, and configuration servers, which store the cluster meta-
data, the location in the cluster of each document. When a client submits a query to
the router process, it first refers to the config servers to obtain the locations of the
documents, and then obtains the query results directly from the individual servers or
replica sets (shards). Sharding is carried out on a per collection basis.

A critically important parameter here, for performance purposes, is the “shard key”, an
indexed field or compound field that exists in each document in a collection. It is this
that defines the write distribution across shards of a collection. As such, a poorly-chosen
shard key can have a very detrimental effect on performance. For example, a purely
time-series based shard key may result in all writes going to a single node for extended
periods of time. However, a hashed shard key, while evenly distributing writes across
shards, may impact read performance as a result set is retrieved from many nodes.

7

Arbiters
A MongoDB arbiter is a mongod process that has been configured not to act as a
data node, but to provide only the function of voting when a replica set Primary is to
be elected, to break ties and guard against a split vote. An arbiter may not become
Primary, as it does not hold a copy of the data or accept writes. While it is possible to
have more than one arbiter in a replica set, it is generally not recommended.

Router
(mongos)

Shard
(replica set)

Shard
(replica set)

App Server

Router
(mongos)

App Server

2 or more Routers

2 or more Shards

3 Config Servers

Config Server

Config Server
Config Server

Figure 3. MongoDB Sharded Cluster

Secondary ArbiterHeartbeat

Election for New Primary

Primary ArbiterHeartbeat

New Primary Elected

Primary

Figure 4. MongoDB elections and the arbiter process

8

Delayed Replica Set Members
Delayed replica set members add an additional level of redundancy, maintaining a
state that is a fixed number of seconds behind the Primary. As delayed members are
a “rolling backup” or a running “historical” snapshot of the data set, they can help to
recover from various types of human error.

Delayed members are “hidden” replica set members, invisible to client applications,
and so cannot be queried directly. They also may not become Primary during normal
operations, and must be reconfigured manually in the case that they are to be used to
recover from error.

Backups
Backing up a replica set or sharded cluster is carried out via the “mongodump“
command line utility. When used with the --oplog parameter, this creates a dump of
the database that includes an oplog, to create a point-in-time snapshot of the state of a
mongod instance. Using mongorestore with the --replayOplog parameter, you can then
fully restore the data state at the time the backup completed, avoiding inconsistency.

For more advanced backup requirements, a third party tool called “mongodb-
consistent-backup” - also command line based - is available that provides fully
consistent backups of sharded clusters, a complex procedure, given that sharded
databases are distributed across multiple hosts.

Monitoring
There are a number of commercial tools, both official and unofficial, available on
the market for monitoring MongoDB. These tools, in general, are single product
management utilities, focusing on MongoDB exclusively. Many focus only on certain
specific aspects, such as collection management in an existing MongoDB architecture,
or on backups, or on deployment. Without proper planning, this can lead to a situation
where a proliferation of additional tools must be deployed and managed in your
environment.

Figure 5. MongoDB Delayed Secondary node

Primary

Secondary

Secondary

Secondary

Secondary
slaveDelay: 3600
priority: 0
hidden: true

9

The command line tools provided with MongoDB, “mongotop” and “mongostat” can
provided a detailed view of your environments performance, and can be used to
diagnose issues. In addition, MongoDB’s “mongo” command line client can also run
“rs.status()” - or in a sharded cluster “sh.status() - to view the status of replica sets or
clusters and their member hosts. The “db.stats()” command returns a document that
addresses storage use and data volumes, and their are equivalents for collections, as
well as other calls to access many internal metrics.

Synopsis
This has been a brief synopsis of considerations for administering MongoDB. Even at
such a high level though, it should immediately be obvious that while it is possible
to administer a replica set or sharded cluster from the command line using available
tools, this does not scale in an environment with many replica sets or with a large
production sharded cluster. In medium to large environments comprising many hosts
and databases, it quickly becomes unfeasible to manage everything with command
line tools and scripts. While internal tools and scripts can be developed to deploy
and maintain the environment, this adds the burden of managing new development,
revision control systems, and processes. A simple upgrade of a database server may
become a complex process if tooling changes are required to support new database
server versions.

But without internal tools and scripts, how do we automate and manage MongoDB
clusters?

10

ClusterControl from Severalnines is designed to answer these questions and more.
ClusterControl allows you to deploy, backup, and monitor not only your MongoDB
replica sets and sharded clusters, but also your other Open Source database assets.
MySQL with native replication, NDB or Galera, and PostgreSQL, as well as MongoDB
are managed in a single web-based unified interface. Here we take a look at
ClusterControl’s features in more detail.

Deployment
A core feature of ClusterControl is the deployment of MongoDB replica sets and
sharded clusters, in addition to its other supported database servers and clusters. If
your environment has already been deployed, ClusterControl has that covered: you can
simply import the existing environment and begin managing it right away.

Once you have logged in, simply select the operation, Deploy or Import, and follow the
wizard-like interface.

Automation with
ClusterControl

Figure 6. ClusterControl initial screen

11

On the initial deployment screen you will provide ssh credentials appropriate to the
hosts on which you are deploying your replica set or cluster. As ClusterControl uses
password-less ssh to connect to and configure your hosts, an ssh key is required. For
security reasons, it is advisable to use an unprivileged user account to log into the
hosts, so a sudo password can be provided to facilitate administrative tasks. If the user
account does not prompt for a sudo password, this is not needed.

You also have the option to disable the iptables or ufw firewall, and to disable
AppArmor or SELinux, on the host to avoid issue with initial deployment.

On the following screen, you can choose to install MongoDB binaries from either
MongoDB Inc or from Percona. Here also, you must specify your MongoDB
administrative user account and password as user level security is mandated. On this
screen also, you can see which configuration template is being used. ClusterControl
uses configuration file templates to ensure repeatable deployments. Templates are
stored on the ClusterControl host and can be edited directly there, or through the
ClusterControl UI.

As shown in Figure 8, you can also choose to use the vendor repositories, if you wish,
or choose your own repository. In addition, you can create a new repository on the
ClusterControl host automatically, to freeze the version of MongoDB that ClusterControl
will deploy to the current release. Once you carried out the appropriate configuration
here, click Deploy, to deploy your replica set.

Figure 7. ClusterControl MongoDB Replica Set deployment

12

As mentioned previously, ClusterControl can deploy not only Replica Sets, but also
Sharded Clusters. Two methods of doing so are supported. First, you can convert an
existing MongoDB Replica Set into a Sharded Cluster, as shown in Figure 10, below.

Figure 8. ClusterControl MongoDB Replica Set deployment

Figure 9. When deployment is finished, your replica set is visible in the UI

13

When “Convert to Shard” is clicked, you are prompted to add at least one Config server
(for production environments, you should add three), and a router, also known as a
“mongos” process.

Figure 10. A Replica Set can be converted to a Sharded Cluster

Figure 11. Adding config servers and routers (mongos)

14

The final stage is to choose your MongoDB configuration templates for config server
and router, as well as your data directory. Finally, click deploy.

When complete, as you can see in Figure 12, below, your Database Clusters screen
will show your shard health instead of individual instances. It is also possible to add
additional shards as needed from this view, as shown.

Backup & Restore
Backups being critical to any production environment, ClusterControl has support for
fully consistent backup and restore of your MongoDB replica set or sharded cluster.

Backups can be taken manually, or can be scheduled regularly or once off.
Centralisation of backups is supported, with backups stored either on the Controller
filesystem, including network-mounted directories, or uploaded to a preconfigured
Cloud provider - currently supported providers are Google Cloud Platform and Amazon
Web Services. This allows you to take full advantage of advanced lifecycle management
functionality provided by Amazon and Google for such features as custom retention
schedules, long-term archival, and encryption at rest, among others. Backup retention
is configurable; you can choose to retain your backup for any time period, or to never
delete backups. AES256 encryption is employed to secure your backups against rogue
elements.

For rapid recovery, backups can be restored directly into the backed up cluster
- ClusterControl handles the full restore process from launch to cluster recovery,
removing error prone manual steps from the process.

Figure 12. Add a shard to your Sharded Cluster

15

Existing backups can also be administered directly from the ClusterControl UI, as shown
in Figure 14, below.

Figure 13. Scheduling your backups

16

Monitoring
ClusterControl’s enterprise monitoring functionality includes configurable custom
dashboards capable of displaying any or all of the standard host metrics, as well as all
key MongoDB performance metrics.

The default Overview includes a view of all MongoDB OpCounters, as well as tabs for
Asserts, Cursors, GlobalLock, Network, WT-Cache, and WT-ConcurrentTransactions,
givign a comprehensive view of your cluster’s performance. This dashboard is fully

Figure 14. Manage existing backups

Figure 15. Overview

17

editable, allowing the addition of any key metric from a list of dozens, as well as the
facility to combine metrics for a complete holistic view of your deployment.

In addition, the Ops Monitor (Figure 16) gives a view of all running operations, helping
track down any performance issues in your cluster.

MongoDB Advisors
Advanced monitoring functionality is included through ClusterControl “Advisors”, found
under the “Performance” tab, as shown in Figure 17. Advisors provide specific advice
on how to address issues in areas such as performance, security, log management,
configuration, storage space, and others.

Figure 16. Ops Monitor

Figure 17. Advisors

18

Advisors are fully customisable through the built in Developer Studio (Figure 18), using
the ClusterControl Domain-Specific Language (DSL), a Javascript-like language. With the
ClusterControl DSL, new Advisors can be created, or existing Advisors can be extended
for an experience fully tailored for your environment.

While, as mentioned, you can create your own custom advisors, several are provided for
key performance and management criteria out of the box. These include Replication Lag
and Replication Window, critically important metrics for cluster resiliency, as well as Error
Detection, an Authentication/Authorisation Sanity Check to aid in security management
and the Unsharded Databases and Collections Check for sharded clusters, to ensure that
everything that should be sharded, is sharded.

There are also more general purpose advisors such as the Disk Mount Options advisor, to
ensure maximum performance of your cluster.

Figure 18. Developer Studio

https://severalnines.com/blog/clustercontrol-developer-studio-write-your-first-database-advisor

19

Integrations

For ease of integration into your existing corporate environment, ClusterControl
supports integrations with commonly used products and technologies. Currently
supported integrations are PagerDuty, VictorOps, OpsGenie, Slack, and Telegram.
Integration of other applications is supported through Webhooks.

Command-Line Access
For ease of automation, ClusterControl also includes a commandline utility, ‘s9s’, which
can also be installed from the website. This can be used to deploy, monitor, and backup
ClusterControl resources, such as nodes, and clusters. In addition, s9s also allows you to
manage users, and to view the status of running processes on ClusterControl-managed
nodes.

Below are a few examples to get you started, and the documentation can be found on
the website and also through context sensitive help in the tool itself.

Help

Figure 19. Adding integrations

1	 $ s9s --help

https://severalnines.com/docs/components.html#installation
https://severalnines.com/docs/components.html#installation

20

Usage

Where COMMAND is:
account - to manage accounts on clusters;
backup - to view, create and restore database backups;
cluster - to list and manipulate clusters;
job - to view jobs;
maint - to view and manipulate maintenance periods;
metatype - to print metatype information;
node - to handle nodes;
process - to view processes running on nodes;
script - to manage and execute scripts;
server - to manage hardware resources;
user - to manage users.

MongoDB deploy cluster example
The following command deploys a three-node MongoDB ReplicaSet by MongoDB Inc,
with “replica_set_0”:

MongoDB create backup example
The following command creates a backup using mongodump on 10.0.0.148 and stored
it inside ClusterControl host under /storage/backups directory:

MongoDB cluster status example:
The following command shows the status of the created MongoDB ReplicaSet:

1	 s9s COMMAND [OPTION...]

1	 $ s9s cluster --create --cluster-type=mongodb --nod
es=”10.0.0.148;10.0.0.189;10.0.0.219” --vendor=10gen --pro-
vider-version=’3.2’ --os-user=root --db-admin=’admin’
--db-admin-passwd=’MyS3cr3tPass’ --cluster-name=’MongoDB
ReplicaSet 3.2’ --wait

1	 $ s9s backup --create --backup-method=mongodump --clus-
ter-name=’MongoDB ReplicaSet 3.2’ --nodes=10.0.0.148 --back-
up-directory=/storage/backups

1	 $ s9s cluster --stat
2	 MongoDB ReplicaSet 3.2

 Name: MongoDB Repli-
caSet 3.2 Owner: dba/users

21

MongoDB node status example
The following command returns configuration options for MongoDB node, 10.0.0.148:

This is just a brief outline of s9s functionality, and many more operations are possible,
as you can see above. The s9s command line tool facilitates scripting of many
ClusterControl operations, allowing integration with your new and existing management
utilities and scripts.

1	 $ s9s node --list-config --nodes=10.0.0.148
2	 GROUP OPTION NAME VALUE
3	 storage dbPath /var/lib/mongodb
4	 storage journal.enabled true
5	 storage engine wiredTiger
6	 mmapv1 smallFiles false
7	 systemLog destination file
8	 systemLog path /var/log/mon-

godb/mongod.log
9	 systemLog logAppend true
10	 net port 27017
11	 processManagement fork true
12	 processManagement pidFilePath /var/run/mon-

godb/mongod.pid
13	 setParameter enableLocalhostAuthBypass true
14	 replication replSetName replica_set_0
15	 sharding clusterRole shardsvr
16	 sharding security.keyFile /etc/mongo-clus-

ter.key
17	 Total: 14

3	 ID: 6 State: STARTED
4	 Type: MONGODB Vendor: 10gen

3.2
5	 Status: All nodes are operational.
6	 Alarms: 0 crit 0 warn
7	 Jobs: 0 abort 0 defnd 0 dequd 0 faild 0 finsd 0

runng
8	 Config: ‘/etc/cmon.d/cmon_6.cnf’
9	 LogFile: ‘/var/log/cmon_6.log’
10	

HOSTNAME CPU MEMORY SWAP DISK NICs
11	 10.0.0.148 1 6% 992M 139M 0B 0B 19G 15G 7.3K/s 33K/s
12	 10.0.0.189 1 6% 992M 144M 0B 0B 19G 15G 8.8K/s 54K/s
13	 10.0.0.219 1 5% 992M 143M 0B 0B 19G 15G 8.0K/s 51K/s
14	 10.0.0.156 2 10% 3.6G 1.4G 0B 0B 19G 4.5G 301K/s 75K/s

22

In this Whitepaper, we have reviewed the challenges involved in managing MongoDB
at scale and have introduced mitigating features of ClusterControl from Severalnines.
As a best of breed database management solution, ClusterControl brings consistency
and reliability to your database environment, and simplifies your database operations at
scale.

In Conclusion

23

ClusterControl is the all-inclusive open source database management system for
users with mixed environments that removes the need for multiple management
tools. ClusterControl provides advanced deployment, management, monitoring, and
scaling functionality to get your MySQL, MongoDB, and PostgreSQL databases up-
and- running using proven methodologies that you can depend on to work. At the core
of ClusterControl is it’s automation functionality that let’s you automate many of the
database tasks you have to perform regularly like deploying new databases, adding and
scaling new nodes, running backups and upgrades, and more. Severalnines provides
automation and management software for database clusters. We help companies
deploy their databases in any environment, and manage all operational aspects to
achieve high-scale availability.

Severalnines provides automation and management software for database clusters. We
help companies deploy their databases in any environment, and manage all operational
aspects to achieve high-scale availability.

Severalnines’ products are used by developers and administrators of all skills levels to
provide the full ‘deploy, manage, monitor, scale’ database cycle, thus freeing them from
the complexity and learning curves that are typically associated with highly available
database clusters. Severalnines is often called the “anti-startup” as it is entirely self-
funded by its founders. The company has enabled over 12,000 deployments to date
via its popular product ClusterControl. Currently counting BT, Orange, Cisco, CNRS,
Technicolor, AVG, Ping Identity and Paytrail as customers. Severalnines is a private
company headquartered in Stockholm, Sweden with o ces in Singapore, Japan and the
United States. To see who is using Severalnines today visit:

https://www.severalnines.com/company

About Severalnines

About ClusterControl

https://www.severalnines.com/company

24

An Executive’s Guide to Database Management
ROI
This guide discusses the options available to IT leaders when
bringing in open source databases into their environments as
well as general information on the open source database market.
Also included in this whitepaper are an analysis of the costs of
both doing and not doing select actions which are essential to
managing open source databases.

Download here

DIY Cloud Database on Amazon Web Services:
Best Practices
Over the course of this paper, we cover the details of AWS
infrastructure deployment, considerations for deploying your
database server(s) in the cloud, and finish with an example
overview of how to automate the deployment and management
of a MongoDB cluster using ClusterControl.

Download here

Become a MongoDB DBA: Bringing MongoDB
to Production
Learn from our MongoDB experts what it takes to ensure your
MongoDB stacks are production-ready. This whitepaper includes
tips and tricks that we have collected from our best resources to
help you deploy, monitor, manage and scale MongoDB in your
environment.

Download here

The DevOps Guide to Database Management
Relational databases are not very flexible by nature, while
DevOps is all about flexibility. This creates many challenges
that need to be overcome. This white paper discusses three
core challenges faced by DevOps when it comes to managing
databases. It also discusses how Severalnines ClusterControl can
be used to address these challenges.

Download here

Become a MongoDB DBA:
Bringing MongoDB

to production

An Executive's Guide to
Database Management ROI

Related Whitepapers

https://severalnines.com/resources/whitepapers#download_whitepaper/5086
https://severalnines.com/resources/whitepapers#download_whitepaper/5114
https://severalnines.com/resources/whitepapers#download_whitepaper/5081
https://severalnines.com/resources/whitepapers#download_whitepaper/5073

25

	Introduction
	Considerations for administering MongoDB
	Built-in Redundancy
	Scalability
	Arbiters
	Delayed Replica Set Members
	Backups
	Monitoring
	Synopsis

	Automation with ClusterControl
	Deployment
	Backup & Restore
	Monitoring
	MongoDB Advisors
	Integrations
	Command-Line Access

	In Conclusion
	About ClusterControl
	About Severalnines
	Related Whitepapers

