several

How to Design
Highly Available
Upen Source
Database Environments

Applicgeion Server pProxysQl

| 7 A Availabiliey Zone B
i e e . o

s Sl Paadead o |
| mi \ ’7 x .
|Appliction Server Proxys@l | u ‘ ‘l B pe—
i ERL 27 Lk T Nl zone ¢ |
3 = 4{‘ P 4 7/ Gdlerq node Clusterconkrol | ﬂ ﬂ
| 17N ﬂ;j | m (req’der) B, StANdDY G
B), 4 4) m . ‘I
‘ . & HAV L A‘C e eSsm a===e E) ﬂ
’ ° > ‘\‘ ®)

N 4 AN AN E I [

N wn | TNE A i | 11117]
| Applicakion Server ProxysQl ‘ \
L : e ™~ N R it |] ArBitracor |
| > @7 | ~ : . |
f L] .} ‘,\ J ’ ’ ’ ’ - - ‘u
| : D il | /" /4 |
| R R A T e sy S o B S—
% " wam Q?Fergdggde clugﬁ;cd%r;uol I
| 4

I
L————-—-————-—

severalnings

¥ Table of Contents

1. Introduction - couple of words on “High Availability”

2. High Availability basics
2.1. Measuring High Availability
2.1.1. What is High Availability?
2.1.2. SLA's
2.1.2.1. Nines

2.1.3. Measuring availability
2.2. Magic number: “three”
2.3. Single Points of Failure

3. How to design your environment for High Availability?
3.1. Identify Single Points of Failure
3.2. Decide what availability level you want to achieve
3.3. Which failures you can tolerate?
3.3.1. Overall setup
3.3.2. Hardware failures
3.3.3. Network failures
3.3.4. Proxy layer failures
3.3.5. Database tier failures
3.3.5.1. MySQL crash on slave
3.3.5.2. MySQL crash on master
3.3.5.3. Partial data loss
3.3.5.4. Full data loss
3.3.5.5. Temporary load spike
3.3.5.6. Increased load due to bad query
3.3.6. Availability zone or a datacenter failure
3.3.7. What issues cannot be tolerated?
3.4.Remove SPOF'sandreduceimpactofissueswith high severity
3.4.1. Identify the culprit of the issues
3.4.1.1. Hardware issues
3.4.1.2. Network issues
3.4.1.3. Proxy layer issues
3.4.1.4. Database tier issues
3.4.1.5. Infrastructure issues
3.4.2. How to minimize the impact of the issues?
3.4.2.1. Not enough resources to handle
failure of a single node
3.4.2.2. Failover is not fast enough
3.4.2.3. No redundancy in the proxy layer
3.4.2.4. Long backup recovery time
3.4.2.5.Noredundancyintermsoftheinfrastructure
3.5. Design the environment
3.5.1. Database tier design
3.5.2. Proxy tier design
3.5.2.1. Deploy ProxySQL with keepalived
for VIP failover
2.2. Deploy ProxySQL on application hosts
2.3. Synchronization of the ProxySQL
configuration

3.5.
3.5.

—~ 0000 OO 0}

—_—

NSRS) 2)\ S 2 |\ i N N N G S N
A~ OO0 VvVwVWoLoN~NOoOuUuUTNd~DdMw N

21
21
21
21
21
22
22
22

22
23
23
23
23
23
24
26

26
27

28

nin3s

3.5.3. Backup redesign
3.5.4. Deployment
3.6. Test your design

4. Examples of the highly available setups
4.1. Single datacenter, replication
4.2. Single datacenter, Galera cluster
4.3. Multiple datacenter, replication

About ClusterControl

About Severalnines

Related Resources

28
28
33

35
35

36
38
38
39

nin3s

B [ntroduction - couple of words

on “High Availability”

These days high availability is a must for any serious deployment. Long gone are days
when you could schedule a downtime of your database for several hours to perform a
maintenance. If your services are not available, you are losing customers and money.
Therefore making a database environment highly available has typically one of the
highest priorities.

This poses a significant challenge to database administrators. First of all, how do you
tell if your environment is highly available or not? How would you measure it? What are
the steps you need to take in order to improve availability? How to design your setup to
make it highly available from the beginning?

There are many many HA solutions available in the MySQL (and MariaDB) ecosystem,
but how do we know which ones we can trust? Some solutions might work under
certain specific conditions, but might cause more trouble when applied outside of these
conditions. Even a basic functionality like MySQL replication, which can be configured in
many ways, can cause significant harm - for instance, circular replication with multiple
writeable masters. Although it is easy to set up a 'multi-master setup’ using replication,
it can very easily break and leave us with diverging datasets on different servers. For

a database, which is often considered the single source of truth, compromised data
integrity can have catastrophic consequences.

In the following chapters, we'll discuss the requirements for high availability in database
setups, and how to design the system from the ground up.

nin3s

il High Availability basics

2.1. Measuring High Availability

2.1.1. What is High Availability?

To be able to decide if a given environment is highly available or not, one has to have
some metrics for that. There are numerous ways you can measure high availability, we'll
focus on some of the most basic stuff.

First, though, let’s think what this whole high availability is all about? What is its
purpose? It is about making sure your environment serves its purpose. Purpose can

be defined in many ways but, typically, it will be about delivering some service. In the
database world, typically it's somewhat related to data. It could be serving data to

your internal application. It can be to store data and make it queryable by analytical
processes. It can be to store some data for your users, and provide it when requested
on demand. Once we are clear about the purpose, we can establish the success factors
involved. This will help us define what high availability means in our specific case.

2.1.2. SLAs

When working with customers or partners, one would typically define some sort of
Service Level Agreement (SLA). It is also quite common to define SLA's for internal
services. What is an SLA? It is a definition of the service level you plan to provide to
your customers. This is for them to better understand what level of stability you plan
for a service they bought or are planning to buy. There are numerous methods you can
leverage to prepare a SLA but typical ones are:

« Availability of the service (percent)

« Responsiveness of the service - latency (average, max, 95 percentile, 99
percentile)

» Packet loss over the network (percent)
« Throughput (average, minimum, 95 percentile, 99 percentile)

It can get more complex than that, though. In a sharded, multi-user environment

you can define, let's say, your SLA as: “Service will be available 99,99% of the time,
downtime is declared when more than 2% of the users is affected. No incident can take
more than 15 minutes to be resolved”. Such SLA can also be extended to incorporate
query response time: “downtime is called if 99 percentile of latency for queries excede
200 milliseconds”.

2.1.2.1. Nines

Availability is typically measured in “nines”, let us look into what exactly a given amount
of “nines” guarantees. The table below is taken from Wikipedia:

nin3s

https://en.wikipedia.org/wiki/High_availability

Availability %

90%
("one nine”)

95%
("one and a half nines”)

97%

98%

99%
("two nines")

99.5%
("two and a half nines")

99.8%

99.9%
("three nines")

99.95%
("three and a half nines")

99.99%
("four nines")

99.995%
("four and a half nines")

99.999%

("five nines")
99.9999%
("six nines")
99.99999%
("seven nines")
99.999999%
("eight nines")

99.9999999%
("nine nines")

Downtime
per year

36.5 days
18.25 days
10.96 days

7.30 days

3.65 days

1.83 days

17.52 hours
8.76 hours
4.38 hours

52.56 min
26.28 min

5.26 min

315s
315s
315.569 ms

31.5569 ms

Downtime
per month

72 hours
36 hours
21.6 hours
14.4 hours
7.20 hours
3.60 hours
86.23 min
43.8 min
21.56 min
4.38 min
2.16 min
2595
2.59s
262.97 ms
26.297 ms

2.6297 ms

Downtime
per week

16.8 hours
8.4 hours
5.04 hours
3.36 hours
1.68 hours
50.4 min
20.16 min
10.1 min
5.04 min
1.01 min
30.24 s
6.05s
604.8 ms
60.48 ms
6.048 ms

0.6048 ms

Downtime
per day

2.4 hours
1.2 hours
43.2 min
28.8 min
14.4 min
7.2 min
2.88 min
1.44 min
43.2s
8.64 s
432s
864.3 ms
86.4 ms
8.64 ms
0.864 ms

0.0864 ms

As we can seeg, it escalates quickly. Five nines (99,999% availability) is equivalent to 5.26
minutes of downtime over the course of a year. Availability can also be calculated in
different, smaller ranges: per month, per week, per day. Keep in mind those numbers,
as they will be useful when we start to discuss the costs associated with maintaining

different levels of availability.

nin3s

2.1.3. Measuring availability

To tell if there is a downtime or not, one has to have insight into the environment. You
need to track the metrics which define the availability of your systems. It is important
to keep in mind that you should measure it from a customer’s point of view, taking the
broader picture under consideration. It doesn't matter if your databases are up if, let's
say, due to a network issue, no application cannot reach them. Every single building
block of your setup has its impact on availability.

One of the good places where to look for availability data is web server logs. All
requests which ended up with errors mean something has happened. It could be
HTTP error 500 returned by the application, because the database connection failed.
Those could be programmatic errors pointing to some database issues, and which
ended up in Apache’s error log. You can also use simple metric as uptime of database
servers, although, with more complex SLA's it might be tricky to determine how the
unavailability of one database impacted your user base. No matter what you do, you
should use more than one metric - this is needed to capture issues which might have
happened on different layers of your environment.

2.2. Magic number: “three”

Even though high availability is also about redundancy, in case of database clusters,
three is a magic number. It is not enough to have two nodes for redundancy - such
setup does not provide any built-in high availability. Sure, it might be better than just a
single node, but human intervention is required to recover services. Let's see why it is
SO.

///// VL4

Node A Node B

Let's assume we have two nodes, A and B. There's a network link between them. Let us
assume that both A and B serves writes and the application randomly picks where to
connect (which means that part of the application will connect to node A and the other
part will connect to node B). Now, let's imagine we have a network issue which results in
lost network connectivity between A and B.

nin3s

o ([J

° - °
—

///// /////

Node A Node B

What now? Neither A nor B can know the state of the other node. There are two actions
which can be taken by both nodes:

1. They can continue accepting traffic
2. They can cease to operate and refuse to serve any traffic

Let's think about the first option. As long as the other node is indeed down, this is the
preferred action to take - we want our database to continue serving traffic. This is the
main idea behind high availability after all. What would happen, though, if both nodes
would continue to accept traffic while being disconnected from each other? New data
will be added on both sides, and the datasets will get out of sync. When the network
issue will be resolved, it will be a daunting task to merge those two datasets. Therefore,
it is not acceptable to keep both nodes up and running. The problem is - how can
node A tell if node B is alive or not (and vice versa)? The answer is - it cannot. If all
connectivity is down, there is no way to distinguish a failed node from a failed network.
As a result, the only safe action is for both nodes to cease all operations and refuse to
serve traffic.

Let's think now how a third node can help us in such a situation.

nin3s

So we now have three nodes: A, B and C. All are interconnected, all are handling reads

and writes.

/1//// /1////
Node A Node B

—

//1//

Node C

Again, as in the previous example, node B has been cut off from the rest of the cluster
due to network issues. What can happen next? Well, the situation is fairly similar to
what we discussed earlier. Two options - node B can either be down (and the rest of the
cluster should continue) or it can be up, in which case it shouldn't be allowed to handle
any traffic. Can we now tell what's the state of the cluster? Actually, yes. We can see that
nodes A and C can talk to each other and, as a result, they can agree that node B is not
available. They won't be able to tell why it happened, but what they know is that out

of three nodes in the cluster two still have connectivity between each other. Given that
those two nodes form a majority of the cluster, it makes possible to continue handling
traffic. At the same time node B can also deduct that the problem is on its side. It
cannot access neither node A nor node C, making node B separated from the rest of
the cluster. As it is isolated and is not part of a majority (1 of 3), the only safe action it
can take is to stop serving traffic and refuse to accept any queries, ensuring that data
drift won't happen.

Of course, it doesn't mean you can have only three nodes in the cluster. If you want
better failure tolerance, you may want to add more. Keep in mind, though, it should
be an odd number if you want to improve high availability. Also, we were talking
about “nodes” in the examples above. Please keep in mind that this is also true for
datacenters, availability zones etc. If you have two datacenters, each having the same
number of nodes (let's say three nodes each), and you lose connectivity between
those two DC's, same principles apply here - you cannot tell which half of the cluster
should start handling traffic. To be able to tell that, you have to have an observer in a
third datacenter. It can be yet another set of nodes, or just a single host, with the task
to observe the state of remaining dataceters and take part in making decisions (an
example here would be the Galera arbitrator).

nin3s

10

2.3. Single Points of Failure

High availability is all about removing single points of failure (SPOF) and not introducing
new ones in the process. What are the SPOFs? Any part of your infrastructure which,
when failed, brings downtime as defined in SLA, is called a SPOF. Infrastructure

design requires a holistic approach, the different components cannot be designed
independently of each other. Most likely, you are not responsible for the whole design -
database administrators tend to focus on databases and not, for example, the network
layer. Still, you have to keep the other parts in mind and work with the teams which

are responsible for them, to make sure that not only the part you are responsible

for is designed correctly but also that the remaining bits of the infrastructure were
designed using the same principles. On top of that, such knowledge of how the whole
infrastructure is designed, helps you to design the database stack too. Knowing what
issues may happen helps to build some mechanisms to prevent them from impacting
the availability of the database.

nin3s

N

| How to design your
environment for High
Availability?

In this section we will go through the steps which are crucial in building a healthy, highly
available environment.

3.1. Identify Single Points of Failure

As mentioned in the previous section, you cannot focus on separate bits of your
infrastructure: you have to identify interconnections and relations between the different
parts in order to design a truly highly available environment. For instance, the network
- does it have enough redundancy built in? Switches, routers - are they doubled? What
about hardware - do you have redundancy in I/O subsystem? RAID array? What kind of
disks do you use? Can they be replaced online or a server has to be stopped?

With cloud deployments, it is even more complex as you do not have the whole picture.
Is the network redundant or not? Does it make sense to bother with bonding network
interfaces or are they just virtual entities, related to a single, physical network interface?
To what extent is the storage volume redundant? Most likely you will not get answers

to all of those questions and, as result, you will have to assume the worst case scenario
and prepare for it.

Once you've gone through all aspects of your environment, you can start to plan your
database layer. How is your application going to connect to your database? Are you
going to deploy a proxy layer? If so, how do you make sure that it will not become a
single point of failure? Let's assume you will use proxies for improved flexibility. How are
you going to handle service discovery on both application and proxy side? At the end,
you'll be adding new databases and proxies to your environment. You need to point
your application to newly added proxies. You need to modify your proxies to include
newly added database nodes. Are you going to manage the list of infrastructure by
hand, will you manage DNS entries by hand, or maybe use external solutions like Consul
or Etc.d? If so, how you are going to make those services highly available? If you are
going to create scripts to handle the service discovery and application reconfiguration,
how are you going to ensure those scripts are always executed? Maybe you should
create redundant "“management” hosts? This may pose additional problems though.
How do you ensure that those two copies of the infrastructure management scripts will
be able to work together, and there will be no conflicts between them.

As you can see, going through the whole setup to identify potential single points of
failure is quite a time-consuming task, yet it is needed. Please keep in mind, we are not
talking about removing the SPOFs yet. For now we have to identify them and have a

nin3s

12

plan to mitigate the risk. Next steps will be all about the risk itself and how to calculate
it.

3.2. Decide what availability level you want to achieve

The problem with increasing availability of your environment is cost. Let's stop for a
second and think about it. At the network level, redundancy means you have to add
more than one appliance which serves a particular role. Instead of one switch, you need
at least two. Instead of one router, you need at least two. This increases the overall cost
of such environment. At the hardware level, it's similar - a server with redundant power
supply is more expensive than a server without redundancy. A RAID array which can
tolerate two disk failures will require more disks than an array which can tolerate just
one failure at a time. At the application level, the same basic principle. The higher the
availability, the higher the cost. A cluster which can automatically tolerate the failure of
two nodes will require more nodes than a cluster which can tolerate just a single failure.
The bottom line is - availability doesn't come for free.

With this in mind, you have to think about your requirements. What is the lowest
availability you can accept? This is definitely not the simplest decision to take, but there
is a thought process that you can follow.

What is the cost of downtime for my business? How much money will | lose if my
services will be unavailable for, let’s say, a minute? This can be defined in a customer
SLA, or it is something you can calculate based on loss of revenue. Let's imagine that
your website generates an income of €1000 per minute. Let's say, it comes out of 50
deals, €20 each. We are talking about averages here - you should have access to your
own company numbers. Or, it can be the other way. Let's say that you sell services and
each minute of downtime costs you €1000 in some sort of compensation to users. Let
us then assume a minute’'s downtime is €1000 less in the company bank account.

€1000 per minute gives us €52,560 per year if we assume four nines availability (99.99%
- 52.56 minutes per year). €1000 per minute gives us €261,600 if we assume three and
half nines availability (99.95% - 4.38 hours per year).

Knowing this we can start to think - what is the availability level you really need to
achieve? Let's say that all the expenses needed to bring you to 99.95% availability sum
up to €70000 per year. It definitely makes sense to pay that and not lose almost four
times more than that in case of downtime. Does it make sense to add another €30000
to reach 99.99% availability? It would not seem so. Would it make sense to invest in
99.95% availability if your loss would be €100 per minute instead of €1000? Not really,
you would do better settling for even lower availability level, which would lower the
price tag.

This kind of calculation is crucial in understanding how you should design your
environment. As we just shown, it doesn’t make sense to design high availability just
for the sake of high availability - it has to make business sense. Next step will be to
determine what kind of failures you can tolerate and which ones are not acceptable.

nin3s

13

3.3. Which failures you can tolerate?

Again, you have to stop for a bit and think about it for a moment. Let's say we settled
for 99.95% availability, which sets our yearly downtime budget at a little less than 53

minutes. You need to think what can go wrong and how would it affect your downtime.
Let's first come up with some examples on how your environment may look like. We will

be focussing on the database tier but such planning should be done for every layer of

your infrastructure.

3.3.1. Overall setup

—

Datacenter

Availability Zone

/1177
ProxySQL

Let's say you have two database nodes in a single availability zone. It does not have

to be AWS, we use this term in a more generic fashion - as part of a datacenter, which
is self-sustainable. Let's assume this is a replication setup with one master and one
replica. On top of that, you have a single ProxySQL instance, which routes queries
from your application servers to your backend databases. CPU utilization on the nodes
reaches 70%. Backups are in place in physical form (let's assume xtrabackup). To create
and restore one you will need 30 minutes in total (10 minutes to create, 20 minutes to
restore). There's no failover automation, failover is performed by hand, after a DBA is

I

/1117

Master

—S

/1117

Slave

L

paged. Let's say this takes, under worst case conditions, 30 minutes for the on-call DBA

nin3s

14

to wake up, react on the page, assess the situation and take an action. From a hardware
perspective, let's say that redundancy is there (RAID10 with four disk drives, redundant
power supplies etc.). Let's evaluate our single points of failures and what can do wrong.

3.3.2. Hardware failures

r---1

Datacenter

Availability Zone

/1177
ProxySQL

/1117

Slave

L---

First of all, hardware failures. RAID10 on 4 disks is in place, so we are pretty well covered
when it comes to disk failure. Just keep in mind that, sometimes, when disks are from
the same series, they tend to fail in batches. Ideally, mix the disk drives from different
production series. We can say that the total failure of a single node is rather unlikely.
Having said that, the impact is pretty severe. If a master node fails, a slave has to

be promoted to master. This takes around 30 minutes in our example. This alone is

not enough - with two hosts running at 70% of the CPU utilization, one host will be
overloaded with traffic. We need to provision another host, which will take at least

30 minutes to create and restore a backup, and some additional time to setup the
replication. We also assume you have hardware in place to replace the old master with
a new node. In the cloud, this is rather easy. In an on-prem environment, this alone may
be a challenge and it adds to the costs. Anyway, we can say that this is definitely not a
type of failure we can tolerate, even if its probability is quite low.

nin3s 15

3.3.3. Network failures

r---1

Datacenter

Availability Zone

—

° o °

®

/1177 /////
ProxySQL Master

—

/////
Slave

L---

We are not going into details of the network redundancy, although it is definitely
something you should keep in mind. Let's assume for now there was an issue with

the network link between master and slaves and they lost connectivity. It's not likely,
assuming proper redundancy, but if it is the case, the slave will start lagging. Eventually,
you will have to move all of your traffic to the master to avoid lag. Depending on how
much lag your application can tolerate, you may have hope that the issue resolves
itself in time, but if it won't, you are then facing severe consequences as the master
alone cannot handle all of the traffic. Depending on where the issue originates from,
provisioning a new node and setting it up as a slave may be enough. If you are unlucky
though, you may find that the issue cut the master from a network segment where your
slaves are created, making the issue even more severe. Also, any loss of connectivity
between the proxy host and databases will result in severe consequences. We definitely
cannot tolerate this kind of issue as it would render our whole application unavailable
due to overloaded or unreachable database servers. The probability of it happening is
very low though.

nin3s

16

3.3.4. Proxy layer failures

I

/1117

Master

Jf™ " U NN NN NN NN N NN NN NN NN SN NN SN NN NN NN NN SN NN SN NN SN NN N RN RN SN NN SN RN SN NN N NN NN SN NN SN NN SN NN RN SN RN AN RN SN RN O RN A AN Ay

As we mentioned, we have a single ProxySQL instance which is a single point of failure.
If it is not available, no traffic can reach the database, which makes it a severe issue.
ProxySQL has an angel process which can restart the main ProxySQL process within a
second of a crash - therefore we are protected against software being not available,
which is more common than when a whole server goes down. We are not protected
against hardware issues, so making it a very serious impact, albeit with low probability.

3.3.5. Database tier failures

Many things may happen at the database level, let's look at some examples.

nin3s

17

3.3.5.1. MySQL crash on slave

: S T
/1111 /1111

ProxySQL Master

Jf™ ™ T NN NN NN NN N NN NN SN NN SN NN SN NN NN NN NN NN NN SN NN SN NN RN SN NN SN NN SN NN NN NN NN SN NN SN NN SN NN N RN RN SN NN SN RN SN AN O AN A Ry
O N N NN NN N N NN NN NN NN N NN NN NN NN N N NN NN NN N NN NN NN SN N N NN NN N N NN NN NN N N NN NN NN NN SN NN NN BN BN B B hw aw aw aw oaw oaw ol

Crashes are not common but definitely more probable than whole servers going down.
If, for whatever reason, MySQL on a slave goes down, ProxySQL will redirect all of the
traffic to the master, therefore overloading it (please keep in mind that both servers
have CPU utilization of 70%). When the slave recovers, traffic will be redirected back to
it. Typically, such downtime shouldn't take more than couple of minutes (unless we are
facing some bug in MySQL/InnoDB related to our workload) so the overall severity is
medium, even though probability is also medium.

nin3s

18

3.3.5.2. MySQL crash on master

Datacenter

Availability Zone

/1177
ProxySQL

Jf " U N N N N SN SN SN SN NN NN NN NN NN SN SN SN SN SN SN SN SN SN NN NN NN SN SN SN N SN SN SN SN BN SN NN NN SN SN AN AN AN S SN SN SN BN BN AN AN AN Ay
W NN N NN NN N N NN N NN NN SN NN SN SN N NN SN N NN SN N N SN N N NN S N SN NN N NN S N NN S N SN NN N NN NN N NN SN S B A e ew ew aw oew oaw ol

This case is similar to the previous one with an important exception - when the master
fails, no traffic will be processed, which is a worse situation than when your MySQL is
overloaded - it still can process some requests, at least for a while, before it runs out

of open connections. To recover, failover has to be performed (up to 30 minutes, as we
assumed) and then the old master has to be slaved off the new master. It may be as fast
as running CHANGE MASTER TO ... or as slow as provisioning it from scratch (additional
30 minutes). This poses a severe threat and the probability of it happening is medium.

3.3.5.3. Partial data loss

The case we are considering here can be the outcome of an accidental delete. Some
data has been lost or modified and is not usable. It can be either a row or an entire
table. The restore process will most likely look the same. You need to restore a backup
on a separate host (20 minutes), and then find the missing data, extract it and apply
on the master. Depending on the amount of data we are talking about, the whole
process, including restoring original backup, can take some time, starting from 25
minutes. Most likely it'll be completed within 50 minutes, otherwise it'll be faster to
provision everything from scratch. The probability of this to happen could be assessed
as medium, impact may vary from low to high, depending on what kind of data we
are talking about. We'd say on average it's low impact - most likely just a handful of
customers are affected.

nin3s

19

3.3.5.4. Complete data loss

Here you are in deep problem, there's no data at all on our database nodes. You have
to restore backup on both hosts and then setup replication between them. Total time to
restore will probably be around 30 minutes when done manually - you can implement
some parallelization but only to some extent. Severity is high, probability is low.

3.3.5.5. Temporary load spike

Your servers suffered from a temporary increase of load. Depending on how long
the spike will last, severity will differ from low to medium. Worst case scenario, your
databases will start to slow down significantly. Best case, it will be hardly visible.
Probability of this to happen is medium to high, depending on your workload.

3.3.5.6. Increased load due to bad query

Your servers suffer from increased load triggered by an incorrectly written query, or a

query which does not use indexes. Given that we use ProxySQL, you can easily rewrite
or even totally block this query, making this a low severity case even though it's highly
probable to show up.

3.3.6. Availability zone or a datacenter failure

Availability Zone

r ;
L 28
L J
RN V7777 72
i ProxySQL Master oo
P /11 o
E Slave o

ninzs 20

All of the issues mentioned above happen within an environment limited to a

single availability zone and a single datacenter. In case of issues with the underlying
infrastructure, you cannot do anything. If, at any time, either the availability zone or
datacenter would become non-available, our services will not be available either. On
top of that, recovery time is unknown as it does not depend on the DBA - the ball is in
the court of the hosting provider, or the people managing the datacenter. This makes it
extremely hard to predict the duration of the impact. We know only that the impact will
be extremely severe.

3.3.7. What issues cannot be tolerated?

We gave some examples of issues which may impact our high availability. We need now
to discuss which of them can be tolerated and which cannot. Definitely, all issues that
affect our SLA in a major way are to be avoided- if we cannot recover services within

53 minutes, we are in serious troubles. Here we can mention, for example, master crash
or, generally speaking, issues with hardware. If we use a large part of our SLA for a
given incident and we expect the type of incident to be pretty common, then it is also
something we cannot really tolerate. Most likely, we'll suffer from this issue a couple of
times per year. An example here can be a MySQL crash on the slave.

3.4. Remove SPOF’s and reduce the impact of issues with high
severity

3.4.1. Identify the culprit of the issues

Once you decide the type of issues you cannot tolerate, it's time to figure out their root
causes. You have to identify the source of those issues before you can redesign your
environment to mitigate them. Let's go through the examples covered in the previous
section, and see if we can identify the source of the problems. It is very likely that

many issues would be traced to the common root. Once we identify where the issues
originate from, we will think how can we reduce their impact.

3.4.1.1. Hardware issues

Generally speaking, the main issue to solve here is the fact that, when one of the hosts
is not available, the other one will not be able to handle all of the traffic. Another,
serious issue is the failover time - if it is the master that is affected, a slave will have

to be promoted and this takes time and effort. So, we have two culprits - not enough
resources to handle traffic in a degraded state, and a slow failover process.

3.4.1.2. Network issues

Here we described a couple of problems and we need to consider several cases. If the
problem is related to the master only, making it not available, most likely we will have to
perform a failover. We also do not have enough resources to handle load if one of the
hosts gets cut off from the network. We also considered lack of connectivity between
proxy host and the database tier - there’s no redundancy in the proxy layer to handle
network failure (or any other, for that matter).

3.4.1.3. Proxy layer issues
As we mentioned above, there is no redundancy in the proxy layer - anything here
which would make the proxy not reachable would have serious consequences.

nin3s

21

3.4.1.4. Database tier issues

MySQL crashes on master and on slave - in both cases, the culprit is the lack of
resources to handle traffic when one node goes down. On top of that, in case of
master failure, failover takes too much time. Regarding partial data loss scenarios, we
are limited to the time needed to recover from a backup. It takes quite some time to
perform recovery and then dump the data and recover it on the production cluster. Full
data loss - we are limited to how fast you can restore your backup. Load spikes - one
of the culprits is, definitely, lack of resources to accommodate increased load for some
time.

3.4.1.5. Infrastructure issues
Here it is simple - we have all our eggs in one basket, this will be the main culprit in
case of a datacenter-wide outage.

3.4.2. How to minimize the impact of the issues?

In the section above, we came up with a list of culprits our troubles may originate from.
Let's summarize these here:

« Not enough resources to handle failure of a single node
 Failover is not fast enough

« No redundancy in proxy layer

* Long backup recovery time

« No redundancy in terms of the infrastructure

What can we do here to reduce the impact? Let's go through it one by one.

3.4.2.1. Not enough resources to handle failure of a single node
The solution here is to use more slaves, to have more capacity for handling an increase
in CPU utilization triggered either by failure of a node or, an occasional spike in the
workload. While doing that, we have to keep in mind that all of the nodes should
contain the same hardware specification - in order to make sure that all of them can
take any kind of the role (slave or master). It may sound obvious, but we still see some
shortcuts taken here.

Another important aspect here could be the automation of provisioning a new node.
Ideally, as we said, you have a buffer to accommodate a traffic increase. If the traffic

is even higher, though, you'd want to add a new slave as fast as possible. Two options
here are worth considering. For starters, is the provisioning process the most efficient?
Maybe you can switch the provisioning method to something else? For example, you
may see from time to time people who use logical dumps as a provisioning method.

It is a valid method but it is slow. Are you in an environment which provides volume
snapshots? Maybe consider switching to it instead of running xtrabackup, as it might be
faster that way. Second thing to consider - automation. Even though the provisioning
process can be performed manually, it is still better to write code to automate it -
humans tend to introduce latency and sometimes, human errors. If you ever had to
reprovision a slave because you made some mistakes in slaving it off, then you'll know
what we are speaking about here. Well written, well tested and well maintained code
will be faster and not affected by human errors.

nin3s

22

3.4.2.2. Failover is not fast enough

This is another serious issue which we identified. First of all, why is failover slow in our
case? Well, it is slow because it's a manual failover. The worse case is if it happens in the
middle of the night, when you are woken up by a page. First, you need to realize you
got paged. Then you have to get up. A couple of minutes have passed already, and this
is assuming you managed to be woken up by the first page attempt. Then, you need to
get onto a VPN and connect to your company’s network - which adds another couple
of minutes. Next, you need to figure out what happened. SSH to the master, see if it is
reachable, check the state of the slaves, verify that the failover is necessary and then
perform it. By this time you may already be 15 - 20 minutes into the incident. A simple
way of solving the problem is to perform the failover automatically. In that case, it will
be executed in a matter of seconds from the time the master goes down. Of course, a
human still has to be woken up to verify that everything happened as planned, but the
reaction time is not that critical as before. Using tools like ClusterControl, Orchestrator
or MHA, you can reduce the time needed for failover to tens of seconds at most,
significantly reducing any impact the failover may have on your SLA.

3.4.2.3. No redundancy in the proxy layer

The simple solution here is to add redundancy. There are a couple of gotchas, though.
First of all, you have to decide how are you going to design high availability of the proxy
layer? Are you going to use a simple round-robin connectivity from the application? Are
you going to use some sort of VIP in front of the proxy layer? Are you going to use a
loadbalancer (e.g., ELB if you are on AWS) in front of a proxy? Those are the questions
you'll have to answer when adding redundancy.

3.4.2.4. Long backup recovery time

You need to figure out if your backup process can be improved in terms of speed.
Maybe you take a daily (or even weekly) full backup and the rest is covered by replaying
binary logs? In that case adding some incremental backups, executed on an hourly
basis, might help. Maybe there is a way to improve the parallelization of one or more

of the backup process steps? Maybe you can improve recovery time by changing the
backup type?

3.4.2.5. No redundancy in terms of the infrastructure

As with the proxy layer, the answer is to add redundancy. Maybe you should utilize
more availability zones? Maybe you should span your infrastructure across multiple
datacenters? This is not trivial task to accomplish, as it may well add more single points
of failures. But that's the step you need to take if you want to minimize the risk of
infrastructure failure.

3.5. Design the environment

We now know what kind of issues we have to deal with in order to improve our high
availability. Keeping all of them in mind, it's now time to try and design an environment,
which won't have all the flaws of the current setup and which will be able to meet our
SLA and the availability levels we want to reach. As a reminder, here is the list of issues
we identified:

« Not enough resources to handle failure of a single node
« Failover is not fast enough

« No redundancy in proxy layer

« Long backup recovery time

« No redundancy in terms of the infrastructure

nin3s 23

3.5.1. Database tier design

Let's start with the last point - infrastructure redundancy. As we discussed earlier, “three”
is the number we shall count therefore we will use three datacenters. Two will host
database nodes, a third one will keep an “arbitrator”. The issue is that MySQL replication
does not support quorums, it is not aware of this concept. It makes it quite tricky to
handle network splits. We have two options. We can either switch to Galera cluster and
use Galera's quorum mechanism, spread four nodes between two datacenters (two
nodes in each) and add a Galera arbitrator in the third datacenter. We can also stick to
MySQL replication, but then we have to either prepare home-grown software which
would handle network partitioning and quorum, or use something like Orchestrator/
Raft for network partitioning detection and automated failover.

In our example, let's assume we decided to go with Galera cluster as we want to keep
the network split handling within the database itself. Note that Galera is not always

the best choice for all workloads, it is not a drop-in replacement for MySQL/InnoDB.
Yes, it uses InnoDB as storage engine, it contains the entire dataset on every node,
which makes JOINs feasible. But some of the performance characteristics of Galera (like
the performance of writes which are strictly tied to network latency) differ from what
you'd expect from replication setups. Schema change handling works slightly different
too. Some schema designs are not optimal: if you have hotspots in your tables, like
frequently updated counters, this may lead to performance issues. Batch processing
works differently - instead of large batches, you want your transactions to be small. This
is by no means a full list of differences between standalone MySQL/InnoDB and Galera
cluster, but it illustrates that some work might be needed when switching to Galera. For
the sake of simplicity, we are going to say that our workload is compatible with Galera
and it will work just fine in our case.

So, to sum it up, four Galera nodes across two datacenters, and a Galera arbitrator in
the third datacenter. This setup provides tolerance for failure of up to two nodes - a
whole datacenter may go down and the other one will continue to handle services. On
top of that, we'll distribute our nodes between different high availability zones, to make
sure that the failure of a single availability zone won't take out all our nodes within

that datacenter. It is quite important, considering how Galera can provision new nodes
- it performs state transfer by copying all data from one of the existing, operational
nodes. It is important to have such a node in the same datacenter, as moving the whole
dataset over WAN will significantly increase the time needed to provision a new node.

There's actually one more decision we need to make: Are we going to use both
datacenters at once, or will they be in an active-standby configuration? This is an
important decision given that, as you may remember, two nodes can hardly handle the
load. If one would become unavailable, the other would fail under the load. While we
would have three nodes, sending traffic over the WAN to the remaining two nodes in
the second datacenter is not the best option. We can mitigate this issue by increasing
the number of nodes to six, three in each datacenter. We can also benefit from another
feature of Galera and use two writers, one in each datacenter. As a result, the incoming
traffic would be distributed between both datacenters, utilizing all four of Galera nodes
and reducing the load on the individual instances. This can also be a good occasion

to reduce expenses - as long as you can accept some performance issues if a whole
datacenter will become unavailable, you can reduce the size of the nodes in a way
that, load-wise, the cluster can handle the failure of a single node only. It is yet another
trade-off you can do. Regarding expenses, we will reduce inter-datacenter traffic by
utilizing Galera segments - only two nodes, one from each datacenter, will exchange
traffic over WAN.

nin3s

24

https://github.com/github/orchestrator/blob/master/docs/raft.md
https://github.com/github/orchestrator/blob/master/docs/raft.md

So far we covered two points - we can now handle a datacenter failure, we can handle
failure of up to two nodes. Let's take a look at the failover times. If we are going to use
ProxySQL along with Galera cluster (which is a very common setup, everything can be
deployed from ClusterControl), assuming that ProxySQL will be configured correctly,
“failover” can happen within seconds. To be precise, there's no such thing as failover
in Galera cluster - all you need to do is to start writing to another node. ProxySQL can
be used to detect the state of the nodes and redirect traffic from one to another if the
existing writer is unavailable for some reason.

To sum up what we discussed so far, let's take a look at the database tier design:

r---‘

Datacenter A

Availability Zone A Availability Zone B

—3

s

/1177 //1//

L------------

Galera node Galera node
(writer) (reader)

A

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
> o -
]
]
]
]
]
]
]
]
]
]
]
]
1

Datacenter B

Availability Zone A Availability Zone B

!

—

Ld

/1177 //1//

W NN NN NN NN BN NN BN BN SN NN BN BN BN BN BN BN BN BN BN BN BN BN AN N BN BN AN Ay

Galera node Galera node
(writer) (reader)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
> o -
]
]
]
]
]
]
]
]
]
]
]
]
!

L---

nin3s

25

3.5.2. Proxy tier design

We had mentioned lack of redundancy in the proxy layer, let's address that. First of all,
as we mentioned earlier, ProxySQL can handle its own failures. It uses an angel process

which is intended to restart the ‘proxysql’ process should it become unavailable. We still
have to account for host failures. There are many ways you can solve this problem, what

you'll use typically depends on your particular setup. In quite small environments like
the one we're designing, two deployment patterns are quite common.

3.5.2.1. Deploy ProxySQL with Keepalived for VIP failover

The idea here is to leverage Keepalived for VIP failover. You need to decide where

to deploy ProxySQL. Would it be on the database hosts or dedicated hosts? We'd
recommend against collocating ProxySQL (or any other proxy for that matter) on the

database servers - proxies will induce additional CPU utilization making it quite hard to

predict when you should scale your database tier. We can use separate hosts dedicated
to ProxySQL. ProxySQL, like other proxies, uses mostly CPU, so the instances don't
have to have beefy storage - magnetic disks will work just fine. On top of two or three

ProxySQL instances we can deploy Keepalived and configure it to monitor the ProxySQL

process. In real life this will not monitor ProxySQL's processes as ProxySQL can restart
its processes faster than Keepalived can detect it crashed. The idea here is to move
VIP around if the whole node goes down making both ProxySQL and Keepalived not
available. From the application point of view, all it has to do is to connect to the VIP

and it will reach the database as long as one of the ProxySQL nodes would be available.

Such setup can be easily deployed from ClusterControl, using just a couple of clicks.

Here's how our setup could look like:

1

1

: 71 Availability Zone B

1 \\l// —

; =

1

1 . .

: o (= =D

1 s

: Application Server 17111 /1771

1

1 ProxySQL + Galera node
(71 i

: W, Keepalived k\ 14 (reader)

i \

H * | >

: 7 v

: "Wy v

: Application Server \‘ =

1 =

H AN

1 \\// .

1 . <€ = = >

1

i : "1 i

: ///// ProxySQL + Galera node

1 Keepalived (writer)

: Application Server Availability Zone A

1

1

Availability Zone C

11711/

ClusterControl
active

1

1

i M Availability Zone A

1 \\l//

1 =

1 . =

1

1 . .

H o) <= = >

1 s

: Application Server 1771/ /7177

: i ProxySQL + ‘ Galera node
N i i

:) Keepalived ‘\ (writer)

i \

1 . <_)

: 7

: "Wy ¥ \

1 — \

: Application Server ‘ g

H M

1 \\// hd hd

1 o | (= =D

H .

i 0 "1/ i

: ///// ProxySQL + Galera node

1 Keepalived (reader)

: Application Server Availability Zone B

1

1

Datacenter B

Availability Zone C

11711/

ClusterControl
standby

Datacenter C

1711/

1

: Galera
1 Arbitrator
1

1

1

26

3.5.2.2. Deploy ProxySQL on application hosts

Another common pattern is to deploy ProxySQL on the same host as the application
servers. Each application node is configured to connect to the local ProxySQL, using
Unix sockets. Such setup can handle ProxySQL crashes within a second via the

angel process we mentioned earlier. On the other hand, if the whole server crashes,
that particular application node will go down along with ProxySQL, while all other
application nodes can continue to connect via their respective ProxySQL instances. This
particular setup has couple of nice features. One is security - ProxySQL, as of version
1.4.7, does not have support for client-side SSL. It can only setup SSL connection
between ProxySQL and backend. Collocating ProxySQL on the application host and
using Unix sockets is a good workaround for this limitation. Additionally, if you are
going to use ProxySQL for caching your queries, it makes sense to keep it as close to
the application as possible. Local connection via Unix socket will have lower latency than
remote connection via TCP making the use of the cache faster. Here's how such a setup
could look like:

-
1
1
1
; foooo-co-o----------. Datacenter A |
1 AN , Availability Zone B . 1
1 \I/ 1 = i H
H ! = 1 :
1 1 S 1 H
: \- - JI. ———— ° : 1
----- 1
H 1771/ 1117/ N ! , ° ! 1
1
H Application Server ProxysSQL S 1 ”,’ | mmmmmmm—m——————— H
A - 1
H S ! gl " 'y Availability Zone C | !
: \\. e U Galera node ' : 1y
1 77T B e (reader) v 1
i W TN ' : '
1 - ! 4 'y .
1 AT i A il Bl . -
H ~ o . _,c‘s_ ______________ ! = i1
1 ~ 1 1 1
' 11 " NSV P " L
i Application Server ProxySQL) \\x AN o ClusterControl P
- 1
1 /1 S S = ! active !
1 ‘g S = 1 1
’ RN 1
[] ’ 1 SO | lnccaccccccccanad H
1 (71\\ ¢ 1 ~ hd 1 1
: \\l// " 1 - 1 1
| mm=m—=
1 p===T" ™S 1 seeessssssssssssae—-
i] "y . 1
1 1
H 7//// /17 1 Galera node 1 Datacenter C :
i 1
! Application server ProxySQL | Availability Zone A (Writer) ' !
1 —d trmmmmmmmmm e A 1
1 1
B o o o o o e e ol N N A E EEEmmE 1 4 1
1 S '
1
[T R R R R R R R R N N N N N N N N N R R R R R N A N N N R N R R R R N R N N 1 1
[1
1 /1117
H T H Datacenter B~ H :
H an | Availability Zone B . - Galera 1
1 \\// 1 ' 1 1 Arbitrator 1
= 1 1 1
i . : S o '
1 N —— o 1 i
1 TS ——— 1
' 1 ZZ2 N = Ol :
1
1 Application Server ProxySQL S 1 ”,’ | mmmmmmm—m——————— 1
1 Y . ! O
1 SOl PRagiRd " Lo Availability Zone C | !
1 \\, R ’ Galera node ! 1y
i N P3¢ e (reader) v 1y
H W SN ’ 'y : o
1 ’¢’ LN "l [" : :
1 A I A 1 -
: \ .- _L‘-\ _______________ ! hd 11
1 Sso ,' S ! 1
H 1771/ s *~|?, AN ' /7117 -
" N 1
: Application Server ProxySQL VRS < AN : ! ClusterControl 1 :
1 ,' ! S S S ! standby Iy
1 1 ~ S = 1 ! 1
1 ,’ 1 ~~\\\ I 'emmee e meee e e :
1 (N N .
i W o - 5 : !
: / lam==="" ! 1
== 1 1
H . 1 1711/ 1 1
1 1 1
: 1771/ 1711/ 1 Galera node 1 1
i — | Availability Zone A (Writen : i
1 Application Server ~ ProxysQL 1 Availability Zone 1 :
H 1
- 1

nin3s

3.5.2.3. Synchronization of the ProxySQL configuration

At any time, if you use more than one ProxySQL instance, you have to plan how

you will keep them in sync regarding their configuration. Most likely, you want all

of the instances to use the same query rules, the same set of users and the same
configuration of the backend servers. If you scale your backend, you want to add the
new nodes to all of the ProxySQL instances. Doing it by hand is quite daunting and
error-prone. It's so easy to make some mistake and skip some of the changes one
some of the instances. There are couple of ways you can work around this problem.
ProxySQL has an ability to synchronize configuration across multiple nodes. When
configured properly, every change made on a single node will be transferred to all of
the remaining nodes in the ProxySQL cluster. This is very nice and efficient solution, it
just makes it tricky to propagate changes just to a subset of nodes (should such need
arise, although it is more common to have everything synced). Another option, if you
use ClusterControl, is to use a built-in mechanism for syncing ProxySQL nodes. It gives
you an option to define which node should be the source and which other node should
be the destination. You also have more control over when exactly you want to sync
such configuration, making tests easier. Finally, you can always revert to infrastructure
orchestration tools like Ansible, Chef, Puppet or SaltStack. Most of them have modules
which support ProxySQL, so it's quite easy to use them to maintain and propagate
configuration changes.

3.5.3. Backup redesign

Last on the list of problems we identified is the time needed to recover from backup.
The problem with backups is that the time needed to create and recover from a backup
is correlated with the size of the data and you can't always improve it. There are still a
couple of things you can try to speed up the process.

For starters, use physical backup - it will be so much faster than the logical backup. If
your environment gives you an option to use filesystem snapshots, test them and see

if they can help you to recover even faster. Of course, faster disks will also improve

your backup and recovery times. If you happen to stream your data to external servers,
consider keeping the last backup locally, on the node. It will be so much faster to restore
the backup from a local copy than to stream it back over the network. Of course, in
case of streaming, network performance also matters and you may want to look into
upgrading it. Make sure you take backups often - more frequent backups means less
binary logs to apply, and therefore faster recovery time. Automate the backup and
restore process. Ideally, you'll just execute a script which will perform recovery for you -
it'll be more efficient than having to perform the same operations manually. For partial
recovery, consider using a delayed slave. Delay it by 5 - 10 minutes. You can use more
slaves, with different delays for each of them. If you manage to catch the data loss event
in time, you can just wait for the delayed slave to replicate up to that transaction, then
stop the replication, dump missing data and restore it on the production cluster. Such
process typically will be faster than restoring the data from scratch and then dumping
the missing data to restore them on the production. The larger the dataset, the bigger
will be the difference in recovery time in favor of the delayed slave.

3.5.4. Deployment

We went through the planning phase, we have two designs to decide on. As this is
a thought experiment, we won't make any decision on which design to use. With a
small number of application servers, it may make sense to collocate ProxySQL and
application. Otherwise it may become hard to coordinate everything and it might be
better to utilize larger, dedicated instances for the proxies. Next, let’s think about how

nin3s

28

to deploy, manage and scale such setup. There are numerous ways to do that - starting
from deploying everything by hand, which is a rather inefficient way of doing it. You can
write scripts which will automate this process or write playbooks, cookbooks, recipes

for different infrastructure orchestration tools like Ansible, SaltStack, Chef or Puppet. It
will let you use a large number of modules designed to deploy different pieces of the
infrastructure, but note that you still need to create and test the scripts to deploy the
database cluster, taking into account the inter-node dependencies. Finally, we also have
a specialized tool like ClusterControl that can readily deploy the database components
we described above. We are going to deploy using ClusterControl, as it will also help us
monitor and maintain the setup.

Here are the steps you would take in order to deploy such an environment with
ClusterControl. First of all, you need to deploy a Galera cluster. You can do it through
the deployment wizard.

Deploy Database Cluster dploy Import Settings Logout

£ Clusters Lot

MySQL MySQL MySOL Cluster MySQL Group MongoD8 MengoDB PosigraS0L
Replication Galera (NDE) Replication ReplicaSet Shards
% Operational Reports

General & SSH Settings

2% Email Notifications

- Integrations SSH User O SSH Key Path @

root frootf sshid_rsa
@ Key Management

& User Management

=

Cluster Name @

| New Production
i

[] Install Software » | Disable Firewall? » EES Disable AppArmor/SELinux?
& Support Forum

Back

@ Cioseme © Copyright Severalnines 2018 Al Rights Reserved

Confroller: 1.5.1.2411, Frontend: 1.5.1.4434, License: Active

i &
ClusterControl Dy ko Gl e & & 2
eploy Import Settings Logout

[beta |
&= Clusters MySQL MySOL MyS0OL Cluster MyS0L Group MongoDB MongoDB FostgreSQL
Replication Galern (NDE) Replication ReplicaSet Shards

&% Operational Repons.

Dafine MySQL Servers

= Email Notifications

Vendor @ Version @ Server Dala Directory []
- Integrations Percona XtraDB | MaiaDB Codership 57|58 fvarfibimysg)
& KeyManagement
Server Port @ my.cnt Template @ Admin/Root Password @
285 User Management 3306 my57.cnf.galera e -
g s Repository
Usa Vendor Repositories. L
i
] (] Q
@ 100,041 - @ 10.00142 b @ 10.0.0.143
; Support Forum
Add Node
[= 1000144 L]

nin3s

29

You have to define how ClusterControl can access your hosts and then decide on what
Galera flavor you want to have deployed. You need to pass the IP’s of the Galera cluster
and ClusterControl will commence deployment.

(W T (= g™ hags Bl ¢ Database Clustes New production

=8 Clusters

&% Operational Reports
= Email Notifications
A Integrations

@ Key Management

& User Management

New

Production (ACTIVE)
GALERA Clustor I0: 1 Auto Rocovery: Clussor (O /Node (0 CONTROLLER: v

GALERA NODES: + + o o

& Backup

Garbd MaxScale

= Overview th Nodes & Topalogy @ Query Monitor l Performance
Manage Load Balancer
Cluster management Deploy & Import Load Balancers
% Hoats ProxySQL HAProxy Keepalived
Hosts Managemant
Daploy ProsxySQL Import ProxyS0L
— 0
Configuration Management

Load Balancor
Depicy & import Load Balancers

& Processes
Process Managemant

<, Schemas and Users
Usars and Schema Managoement

Upgrades
Software upgrade

k¢ Custom Advisors
Manage Custom Advisors

“ Developer Studio
Managing scripts

Choose where to install
Server Address

10.00.145

ProxySOL User Cradentials
Administration User

admin

Monitor Ugar

proxysql-menitor

Listening port

- 6033

Adrninistration Password

Morniter Password

Add Database User (optional)

M e IJ £ 3
Activity Deploy Import Seltings Logout
= -
v alarms [IEH0 & Logs IEN @ senings
ProxySOL Configuration

Import Configuration @

a-

Next step will be to deploy four ProxySQL instances, which can be done also through
ClusterControl. It is up to you if you will deploy ProxySQL on the application hosts or on
separate, dedicated instances.

=8 Clusters
@& Operational Reports
=% Email Notifications

5. Integrations

@ Key Managament

wUser

New Production

(ACTIVE)
GALERA Cluster D=1 Aute Recovery: Cluster O/ Node 0 CONTROLLER: v

B Overview . Nodes

Manage
Cluster managemant

4, Hosts
Hosts Managermant

@ Configurations
[

% Support Forum

 Load Balancer
Deploy & Import Lond Baancers.

& Processes
Process Management

4, Schemas and Users
Usars and Schoma Managoment

@ Upgrades
Software upgrade

L Custom Advisors
Manage Custom Advinars

4 Developer Studio
anagng scrity

& Topology

ED

@ Query Monitor

Load Balancer
Depiloy & Impert Load Balancers

ProxySOL HAProxy

@ Depioy Keepalwed

Select type of loadbalancer
Keepalived 1:
© Add ProaySQL Instance

Type a virtual host address
Virtual IP:

Network Interface:

Deploy Keepalived

Kaopatived

A 3

& 2

Activity Deploy Import Seltings Logout
GALEFANDDES: v « « PROXYSOL v + « = -
l# Performance s Backup A\ Manage ~ Alarms [& Logs (M £ Settings
Garbd MaxScale
Imnpert Keepalived
HAProxy @ ProscyS0L
10.0.0.145:6032 ¥ Keepalived 2: 10.0.0.146:6032 o
10.0.0.111
ethl

Next, if you deployed ProxySQL on separate instances, you may want to add Keepalived

on top of it.

nin3s

30

Then, finally, we will deploy a Galera arbitrator, garbd. It will be located in the third
datacenter and it will help in case one of the main datacenters would become
unavailable.

< Database Clusters New production

R A

Import Settings Logout

A O
Activty Depioy

GALERA Cluster ID: 1 Auto Recovery: Custer 0/ Node (D CONTROLLER: v GALERANCDES: v v v KEEPALIVED: v v v v PROXYSOL: v v v v = -
= Overview ch Nodes o Topology @ QueryMonitor l¥ Performance i Backup A Manage - Alaems I aops il O Settings
Manage Load Balancer
Custer management Deplay & Import Load Balancers.
4 H ProxySOL HAProxy Keepalived Garbd MaxScale
Hosts Managemant
@ Daploy Garbd) Import Garbd
Configurations
Configuration Management

% Load Balancer
Dopioy & Impont Load Batancers

Process Managemaet

<4, Schemas and Users
Users and Schama Management

4 Upgrades
Software upgrade

& Custom Advisors
Manage Custom Advisars

4, Developer Studio
Managing scrpts

1. Select a host to deploy garbd on or manually type in the |P address of the host

‘Garpd Address: 10.0.0.149 >
CmdLine: fusrfbinfgarbd —cfg fetc/garbd.onf --daemon
2. | Deploy Garxd

Finally, we want to make a change ‘wsrep_provider_options’ to set nodes in the second
datacenter to another segment.

¥ M

A O 3 & 3

New production
Actnity Degloy Import Settings Logout
New Production (AC
GALERA Cluster ID:1 Auto Aecovery: Custer O/ Node () CONTROLLER: v GALERANODES: v + ' GARBD: KEEPALIVED: v v + v PROKYSOL v v v v g -
Change/Set Parameter x|
= Overview ch Nodes i Topology © Oud | Tho parameter will be changed or crosted b the specitied group. ClustarContolwil | B & Logs B Settings
aftempt to dynamically set the configurationvalue if the paramater ks valic. B
paramator and valua ks valid, than the changa can be parsistad in the configumtion
Manage Configuration! | | e,
Custer management (Configuraticn M
. S0 100014 DB Instance: 10.0.0.144 (galera), 10.0.0.143 (gakera) v
Hosts Management 8 fetc/mysadmy, | Group: MYSQLD -
8 /etcimysqiseq =
% Configurations 5 [10.0.0.142 (galera Pt .4 S &
Cenfiguration Managoment T e
o letcimysgimy, | Current Value(s)
Load Balancer & /etcimysqiisag Host Valie
Depicy & Impon Load Balancers =~ . ;
=) 10.0.0143 [omlers 100000, 143 “base_port=4587,; grache. sizes 1024M;
o Processes B fercimysqiimy, grmcast segment=0"
Process Managoment 8 /etcimysaiiseg
ey A 10,000,144 “base_port=-4E6T; geacha.sizo=1024M;
4, Schemas and Users - L | i et
Users and Schoma Management o fetcimysqiimy,
B fetc/mysqiseq
% Usorades 5 Templstes
Saftware upgrade &
myS7 cod.goled
New Value:

la Custom Advisors
Manage Custom Advisors

4, Developer Studio
Managing scripts

“base_port=4567; geache.size=1024M; gmeast.segment=1'

© Copyright Severalnines 2018 All Rights Reserved
Coniroller: 1.5.1.2411, Frontend: 1.5.1.4434, License: Active

nin3s

31

¢ Catsbase Custers New production N 8 J &
ivity Deploy Import Legout

Ac Settings
E GALERA Clusterix 1 Auto Recovery: Cluster () hode 0 CONTROLLER: + GALERANODES: v + + « GARBIr v KEEPALVED: v & « v FROKYSOL v ' « + =
e H Overview rh Modes & Topalogy @ Quary Monitor ¢ Performance th Backup A Manage i Aarms [& Logs I & Settings
Manage Configurations
= Cluster ranagoment Configuraton
— Change/Set Parameter ®
| 1000141
i 4, Hosts -‘Lb‘
8 Juseiy Config Change Log o
a & Configurations. 3 100014 £ Node Restart
Message Host
Configuration Manageant B Aeguind?
o & Load Balancer W fotofm |+ 10.0.0.143:3306: Suscesstully changed and 10.0.0.143 Yoo
Deploy & impon Load Balancers .-i'ﬁ‘_.‘”ﬂﬂ Wwerep_provider_optona=base_port=4567; wwn.m—‘ﬂiﬂt
dray sagmaent=1 n saction [MYSOLD].
B Processss ¥ lotcht | Previous vaslue was base_dir = frarfibimysol; basa_host = 10.0.0.143;
mm-mrmnn_emm-m debug = No; ave.auto_evict = 0;
g FYonees Mansgement 0T causal kapaiive,panod = FT1S; avs debug Jog mask = Oxi;
- o Behen ol 2§ 100014 mdalw_rmdn P1|s,mmwmm ngs;rnsa: T
— Users and Schema Management B fotcin m.mmu-mm.m mm-m.ss:
B fotcin Mﬁnmml = ?‘gs:mmmmmmn PTIS;
& Upgrades - @va.max_instal_tmeouts « 3. eva.send. - 10;
o Soltvars upgrade L 100074 | gys srats_repert_period = PTIM; eve suspect_timeout = PT5S:
B ot/ | Svs-use_aggrogate - trus; sve e, _sand_wincow - 4; sve.version = 0
. || evaview._fonget_imaout = P10; geache.dir = Aranibimysal’
& Gustom Advisors S0 100014 | geache freeze puge ® 50qna = -1; Geache keen_pages count = 0;
Manage Custom Acvisors U foteip | fcache.keep_pages_size = O geachamem _size = O geachaname =
= page_sire = 128M; -
4, Developer Studio o iy 10014 mn;nﬂuda;‘ﬂd:_lmmwf‘onmk debug = 0
Managing scripts atoip | 9C8-fc_tactor = 1; gea. = gesic_master_slave = no;
e _n e max_packet_size = B4500; goS.max_throtte « .25,
00100074 | ges.recv_q_hard_limit = 9223372036854775607; gos.recy_a_sall_kmit =
& ot | 119 A e doner « o pmennt fsten. i ten/ 010 B4R
[l 100014 Change More Paramelers. Cose
o fetem — —
gmmnnunwmﬂ
§ ioteeepaiodieg Proceed Concel
[y 10.0.0.147 (keepaived)
o JateSxpapaiac/keapalivad cont
= [10.0.0.148 (keepatved)
- 8 Jet/eepaimed kmopalived.cont
= [10.0.0.140 (gorbd)
@ letc/garbd.cnf
3 Templates
[£) mys7.cnt.galen

2]

Once this is done, you will have to restart both affected Galera nodes to apply the
changes.

Confirm Restart 0
Preparing RESTART of the node on 10.0.0.143
Perform an Initial Start? r

Initiad start will remeve al files in the datadic and force a full resync (SST), which is
necessary sometimes if the Galera node is trying a Node Recovery multiple tmes and
there is a filesystem issve.

Wait for completion before restarting ancther node with Iritial Start,

Gracaful shutdown timeout: 18000 (seconds)

Controlier will give up waiting *or a noce to gracefully terminate. If the node is still
running after tha timeout you may send the SIGKILL signal to force the node down.

Force stop (SIGKILL) node after the gracaful shutdown timeout has been
mached

| Bcudc ‘Cancel' IDmLa'ﬁneaad hogoalmcl

=

severalnings

P 0 A & 3

Restart Node

° Restarted FINISHED # New Production krzysrtofiiseveralninas.com 10005 2018-03-15 12:15:22 @
=
A Restart Node Status star Nam Started By P Addres V
° Restarted FINISHED A New Production krzysrtof@saeveralnines.com 10.0.05 2018-03-15 1211516 ®
a
= —
[12:16:01]: mysqgld service was started - follow recovery progress in weab interface.
[12:16:01): mysald started.
[12:15:48);: Stasting mysgl on 10.0.0.143:3306.
= [42:16:48]; 10.0.0,143: All processes stopped.
Full Job Details
L1
Import Config Files atis Chu arted \cicires v
° Jeib finished, FINISHED # New Production sysiem 127.0.01 2018-03-15 12:05:46 @
Import Config Files Status J Nal Started dress v
L ° Job finished. FINISHED & New Praduction syslem 127.0.01 2018-03-15 12:05:45 @
Setup Garbd Server Status sster Nar tarted By P Address -
° Job finished. FINISHED 4 New Production krzysziof@severainines.com 10.0.0.5 2018-03-15 11:54:02 @
©

Once this is done, we can finally see the whole topology matching our design:

& [T M 3, +]
Actwity Deploy imgom Setngs Legost
-) 10.0.0.1 458587 Garoch ol
325 rachine
¢ L]
=
0.0.00143: 112 (Heopal
g © wed) o e
wson 12
a | - = & 10001413306 iGakern o
s Synced Primary)
90.0.0.143:6002 ProsyG0L)
= L o . - WEREP ON
148 - —_
_— o L
& _—
3 © 10.0.0.142:3900 {Gabera) o
@ M0.014T 112 Meapalived) o
1] tus Gynoed Primany)
12 "
b Size § \ERER ON
= s Committed 81
% °
@ 10001476032 (ProxySCL) o
=
145
= © 10.0.0.143:3306 (Galora) o
1 Synced Primary]
F
© 1000148112 (Kenpalie) o
men 1.2
==
[
& 1000, 144006 (Galers) o
& 10,001 4400 PrewySO0L) o
o Synced Primary)
145 & B WSREP ON
= 2 tiod Bt
==
& 10.0.0.145:112 (Kenpalived) ol
- .12
==
1010001 48R POy SL) o
2] 148

3.6. Test your design

It's not enough to just plan your environment and then put it in production. You have
to test it in order to understand if it delivers the availability level that you wanted. There
are couple of methods you may want to use for testing.

For starters, manual tests. Kill some VM's and see if the remaining parts of your
environment handled the situation or not. Generate some traffic (ideally, it will be the

nin3s 33

traffic levels of your production, taken from slow or general log) and then see how
everything behaves under load. Can your database tier handle failure of a single node?
Can it handle (load-wise) failure of two nodes? How fast can you recover from backup?
How does the load look like in the proxy tier?

You can also try to automate your tests by using tools like Chaos Monkey or similar. You
can as well come up with your own solution. The idea behind such tools is to randomly
disrupt your production, and test if the high availability mechanisms built into your
environment are enough to handle failures. On small systems, like what we built in our
example, such tools would be an overkill, but for larger deployments it may make sense
to keep such tool running in the background, messing with the environment and testing
your systems. Server crashes are unavoidable - on small setups you may ride your luck
but for larger setups, statistics will inevitably come into play and nodes will fail.

If by any means your system didn’t work as expected, you will have to redesign some
parts of it. Once redesigned, test them again. Repeat until your setup matches your
expectations and requirements related to the availability and SLA.

What is crucial to keep in mind - testing never ends. It's not that, once deployed

on production, your new environment will be left alone. You should also test your
production environment. In fact, Chaos Monkey messes with Netflix's production all
the time (well, within business hours at least - to make sure it won't cause issues when
the engineers are off). To test production, one can make use of the SLA. SLA, typically,
is defined for some period of time. For a year, month, week, etc. If, at the end of that
period, you still have some time left in your downtime pool, you can use that time to
take some risks. Kill a proxy and see if Keepalived moves the virtual IP. Kill a database
node and see if it can be recovered quickly. Maybe you have a new version of some
script, which is intended to improve some aspects of the database maintenance - this is
a great moment to test it.

nin3s

34

https://github.com/Netflix/chaosmonkey

B Examples of the highly

available setups

During the course of this whitepaper, we've shown you how to go about designing a
highly available setup. In this section, we would like to give you some other examples of
high availability setups. Please keep in mind what we discussed at the beginning of the
previous chapter - high availability shouldn't be introduced just for the sake of it. It has
to pay for itself. Some of the setups we will show you below are not as resilient as the
one described already in this whitepaper, but they come at lower price tag. For example,
why pay for the WAN links and traffic between multiple datacenters if you don't really
need that level of redundancy?

4.1. Single datacenter, replication

Here we assume that a single datacenter is enough and we don't need automated
failover across multiple datacenters. You will need a proxy layer to route your traffic and
react on topology changes. You will also need a tool which will take care of automated
failover.

= i
- 1
! Datacenter
1
- 1
1 L el e e il B] L] 1
1 7N ! Availability Zone B : 1
! W, LoammmEmal | -
1 . o] L~ 4 - Se - 1 1
—3 S —3 1
: o . K 1 = N — ° 1 1
1 d s ! \ ! 1
ANEN - - hd O ° 1 1
: ///// /1777 | \\ 1) N o o o 1 1
1 1
: Application Server ProxysQL ‘\ \\l ,’ ,’I ! :
. Y WA B 111/ Lo
: \ /" \\ Slave ’l' Slave ClusterControl ! 1
' D) M R standb -
U/ AN S 544 y o
: L s\ 1 1
1 " . C - -"\H'-':':';‘ I : :
1 e Senu 2 L . 1
1 ~ M). 1 1
: /1111 I s Lo
1 Application Server ProxySQL \}' /\, g \\‘\) 1 :
: AR SN z ;!
1 ,’| \‘ ° N} ° ° ; :
1 1 > 1
(/) ’ (] > (] ° 1
: N/ At iad /4]
! . Jal-” 1771/ M 77774 1771/ o
1 1 ;' I 1
: = [1 Master 7 Slave ClusterControl I 1
1 - i 1 1
. /7/1/ 1771/ SNGamL =" active ! !
1
I | Application server ProxysQL | Availability Zone A Lo
1 B o o e e e e e e e e e e e R e R R R e e e R Em R R e e e e e e 4 :
- 1

35

In this example we have a master and three slaves distributed across two availability
zones - you can, of course, add as many slaves as you need for your load. Traffic is
distributed by ProxySQL instances collocated on application hosts. Two ClusterControl
servers in two availability zones, working in active - standby setup, take care of failover
should the master crashe. What is important, though, is to make sure that the active
ClusterControl is located in the same availability zone as the master. This is to avoid
making the wrong decision to promote a slave to master, should the master be cut off
the rest of the topology after a network partition. Another option would be to leverage
a third availability zone and locate the ClusterControl instance there. ClusterControl will
also make sure failed slaves are brought back to the topology, as long as it is possible.
Of course, it can also be used for monitoring, scaling and managing your setup
including executing topology changes, adding new slaves and so on.

4.2. Single datacenter, Galera cluster

In this example we will look at the minimalistic deployment of the Galera cluster within
a single datacenter. Again, traffic is distributed by ProxySQL instances collocated on
application hosts. We will also add two ClusterControl servers in active - standby for
node and cluster recovery along with monitoring, scaling and management of your
setup.

n

1

! Datacenter A
1 7\ Availability Zone B

: =

1 = .

1 -

1 N s =—— ° °

: " 2N ! . .

1 icati ProxySQL S A4

1 Application Server Y. N ,, ', ///// ///// . =
1 \\ R , Availability Zone C
: s »° ¢ Galera node ClusterControl

1 N 3¢ S (reader) standby

1 \\|// ’1’ \\ V4 °
1 . 4 \ ' L]
1 AT N ‘/

: : V.\ KON <
1 ~

i 1”11/ s ~o AN /1777
: Application Server ~ ProxySQL ?s ~ \\ = Galera
: ,’ ~s~ \\ = Arbitrator
¥ U4 SO S

1) e ~Q . .

E 1, '! _________ . .

! i V72/4 V72/4

: ///// Y24 Galera node ClusterControl

1 — (writer) active

1 Application Server ~ ProxySQL Availability Zone A

1

1

If you want to add more Galera nodes, this is perfectly fine - as long as you will have

an odd number of nodes when counting with Galera Arbitrator (for example 4 nodes +

garbd). The Galera nodes are distributed evenly across availability zones.

4.3. Multiple datacenter, replication

In this setup we show a replication setup spanning across multiple datacenters. Main
issue with replication is that there is no quorum mechanism to detect a datacenter
failure and promote a new master. One of the solutions here is Orchestrator/Raft.

nin3s

R o o o o o o

Orchestrator is a well-known topology manager which can handle failovers. When used
along with Raft, Orchestrator will become quorum-aware. One of the Orchestrator
instances is elected as a leader and executes recovery tasks. Other instances do

not perform any action other than monitoring of the topology. In case of network
partitioning, the partitioned Orchestrator instances won't perform any action. On

the other hand, the part of the Orchestrator cluster which has the quorum will elect

a new master and make the necessary topology changes. ClusterControl is used for
management, scaling and, what's most important, node recovery - failovers would be
handled by Orchestrator but if a slave would crash, ClusterControl will make sure it

will be recovered. Orchestrator and ClusterControl are located in the same availability
zone, separated from the MySQL nodes, to make sure their activity won't be affected by
network splits between availability zones in the datacenter.

n
1 1
1 1
1 1
[(4N [l
1 \/ 1
1 1
i i
1 1
: 1117 m i
H Application Server ProxySQL jmmmemmeeemsccacscmassm—aea- H
' 1 Availability Zone C | '
1 H ! 1
[l (I f 1 1
1 \l/ ' =] =] 1 []
i ' g g P
' : : oo
1 A Y
: mn Wia : " 8
1 Application Server ProxySQL 1 ClusterControl Orchestartor/Raft : 1
: : active > :
1 I o e e e e e e e e e | [_' \\ L)
1 (1N 1
' W 1 \.
! ! iR
: ! Y grenneseanennaneacas 1
1
i /71117 "y] i i DatacenterC ;
H Application Server ProxySQL : i R N i
1 1 1
H 1 H 1 \ . H
e o Y demm e ——— J4 H h o 1
1 1 ‘ 5] 1
i e dommmmmmmana. H i i
1 ' 1 1 ’ 1
: DatacenterB ! ! . /7 '
H 7 ' 1 R4 Orchestartor/Raft 1
] \\/ 1 1 1,7]
1 1 1 ‘./ !
1
i . [|
[l s
H " "y 1 '
H Application Server ProxySQL e _: ________ .
1 1 Availalbility Zone C '(’ :
i : Y S
] () . s
1) ' o o / 1 [
H . i 5 9,7 !
i : : oG
1
1
: mn s : i i Do
[Application Server ProxysQL ! ClusterControl Orchestartor/Raft . 1
: : standby 1 :
[l 1 ! 1
1 T T N e P (2 1
1 \/ 1
1 1
i i
1 1
i 2 i i
H Application Server ProxysQL H
i ;
R o o o o 4

nin3s

37

II About ClusterControl

ClusterControl is the all-inclusive open source database management system for

users with mixed environments that removes the need for multiple management

tools. ClusterControl provides advanced deployment, management, monitoring, and
scaling functionality to get your MySQL, MongoDB, and PostgreSQL databases up-
and- running using proven methodologies that you can depend on to work. At the core
of ClusterControl is it's automation functionality that let's you automate many of the
database tasks you have to perform regularly like deploying new databases, adding and
scaling new nodes, running backups and upgrades, and more. Severalnines provides
automation and management software for database clusters. We help companies
deploy their databases in any environment, and manage all operational aspects to
achieve high-scale availability.

'm About Severalnines

Severalnines provides automation and management software for database clusters. We
help companies deploy their databases in any environment, and manage all operational
aspects to achieve high-scale availability.

Severalnines’ products are used by developers and administrators of all skills levels to
provide the full ‘deploy, manage, monitor, scale’ database cycle, thus freeing them from
the complexity and learning curves that are typically associated with highly available
database clusters. Severalnines is often called the "anti-startup” as it is entirely self-
funded by its founders. The company has enabled over 12,000 deployments to date

via its popular product ClusterControl. Currently counting BT, Orange, Cisco, CNRS,
Technicolor, AVG, Ping Identity and Paytrail as customers. Severalnines is a private
company headquartered in Stockholm, Sweden with o ces in Singapore, Japan and the
United States. To see who is using Severalnines today visit:

https://www.severalnines.com/company

@ & &

Deploy Manage Monitor Scale

nin3s

38

https://www.severalnines.com/company

W Related Resources

MySQL Replication for High Availability

MySQL Replication This tutorial covers information about MySQL Replication,

for with information about the latest features introduced in 5.6
and 5.7. There is also a more hands-on, practical section on
how to quickly deploy and manage a replication setup using
(<) Q ClusterControl.

severalnins ©
o ® Download here

@@

DIY Cloud Database on Amazon Web Services:
Best Practices

severalninzs

DIY Cloud Database

on Amazon Web Services: . .
saie ot Over the course of this paper, we cover the details of AWS

infrastructure deployment, considerations for deploying your
database server(s) in the cloud, and finish with an example
overview of how to automate the deployment and management
of a MongoDB cluster using ClusterControl.

Download here

s MySQL Replication Blueprint

MySQL Replication The MySQL Replication Blueprint whitepaper includes all aspects
g of a Replication topology with the ins and outs of deployment,

setting up replication, monitoring, upgrades, performing

backups and managing high availability using proxies.

Download here

Database Load Balancing for MySQL and
MariaDB with ProxySQL - Tutorial

ProxySQL is a lightweight yet complex protocol-aware proxy that
sits between the MySQL clients and servers. It is a gate, which
basically separates clients from databases, and is therefore an
entry point used to access all the database servers.

Read the tutorial

ninas

39

https://severalnines.com/resources/whitepapers/mysql-replication-high-availability
https://severalnines.com/resources/whitepapers/diy-cloud-database-amazon-web-services-best-practices
https://severalnines.com/resources/whitepapers/mysql-replication-blueprint
https://severalnines.com/resources/tutorials/proxysql-tutorial-mysql-mariadb

several

These days high availability s a must for any serious deployment.
Long gone are days when you could schedule a downtime of your
database for several hours to perform a maintenance. Making a
database environment highly available s one of the highest

prioribies nowadays alongside data wntegrity. For a database, which
15 often considered the single source of truth, compromised data
ntegrity can have catastrophic consequences. This whitepaper
discusses the requirements for high availability in database setups,
and how to design the system from the ground up for continvous
data wtegrity.

© 2018 Severalnines AB. ANl rights reserved. Severalnines and the Severalnines logols) are
trademarks of Severalnines AB. Other names may be trademarks of their respective owners.

	1. Introduction - couple of words on “High Availability”
	2. High Availability basics
	2.1. Measuring High Availability
	2.1.1. What is High Availability?
	2.1.2. SLA’s
	2.1.2.1. Nines

	2.1.3. Measuring availability

	2.2. Magic number: “three”
	2.3. Single Points of Failure

	3. How to design your environment for High Availability?
	3.1. Identify Single Points of Failure
	3.2. Decide what availability level you want to achieve
	3.3. Which failures you can tolerate?
	3.3.1. Overall setup
	3.3.2. Hardware failures
	3.3.3. Network failures
	3.3.4. Proxy layer failures
	3.3.5. Database tier failures
	3.3.5.1. MySQL crash on slave
	3.3.5.2. MySQL crash on master
	3.3.5.3. Partial data loss
	3.3.5.4. Complete data loss
	3.3.5.5. Temporary load spike
	3.3.5.6. Increased load due to bad query

	3.3.6. Availability zone or a datacenter failure
	3.3.7. What issues cannot be tolerated?

	3.4. Remove SPOF’s and reduce the impact of issues with high severity
	3.4.1. Identify the culprit of the issues
	3.4.1.1. Hardware issues
	3.4.1.2. Network issues
	3.4.1.3. Proxy layer issues
	3.4.1.4. Database tier issues
	3.4.1.5. Infrastructure issues

	3.4.2. How to minimize the impact of the issues?
	3.4.2.1. Not enough resources to handle failure of a single node
	3.4.2.2. Failover is not fast enough
	3.4.2.3. No redundancy in the proxy layer
	3.4.2.4. Long backup recovery time
	3.4.2.5. No redundancy in terms of the infrastructure

	3.5. Design the environment
	3.5.1. Database tier design
	3.5.2. Proxy tier design
	3.5.2.1. Deploy ProxySQL with Keepalived for VIP failover
	3.5.2.2. Deploy ProxySQL on application hosts
	3.5.2.3. Synchronization of the ProxySQL configuration

	3.5.3. Backup redesign
	3.5.4. Deployment

	3.6. Test your design

	4. Examples of the highly available setups
	4.1. Single datacenter, replication
	4.2. Single datacenter, Galera cluster
	4.3. Multiple datacenter, replication

	About ClusterControl
	About Severalnines
	Related Resources

