
1

2

3

Table of Contents
Introduction 4

Business considerations for Disaster Recovery 5
Is 100% Uptime Possible? 5

 Analysing risk 6
 Assessing business impact 7

Defining Disaster Recovery? 8
 Outage Timeline 8
 Recovery Time Objective 9
 Recovery Point Objective 9
 RPO + RTO = 0 ? 9

Disaster Recovery Tiers 10
1. No Offsite Data 10
2. Database Backup with no Hot Site 10
3. Database Backup with Hot Site 14
4. Asynchronous Replication to Hot Site 16
5. Synchronous Replication to Hot Site 18

In Conclusion 22

About ClusterControl 23

About Severalnines 23

Related Whitepapers 24

4

The cost of downtime can vary significantly between different organizations, and in
some cases, it may be enough to cause a company to go out of business. To mitigate
the impact of downtime, organizations need an appropriate disaster recovery plan in
place. But how much should a business invest? Designing a highly available system
comes at a cost, and not all businesses and certainly not all applications need five 9’s
availability.

The best disaster recovery strategy for an application largely depends on it’s
importance to the business, and more specifically, RTO (Recovery Time Objective) and
RPO (Recovery Point Objective). RTO is the maximum period of time within which an
application must be restored after a disruption. RPO is the determined maximum period
of time that can pass during which data is lost. Can the business afford to lose 5 hours
of data, or no more than 5 minutes? Can it be down for 4 hours, or at most 15 minutes?
Knowing these numbers will go a long way in helping IT determine a disaster recovery
strategy, as well as the best database solution to support it.

Therefore, disaster recovery can be implemented at different levels. They can be
anything from periodic full backups that are archived offsite, to multi-datacenter setups
with synchronous data replication. What is right for the business will vary by mission-
criticalness.

As we will see in this whitepaper, outages are inevitable but understanding the timeline
of an outage can help us better prepare, diagnose and recover from one. With regards
to the database, different mechanisms can be implemented as part of a DR plan in
order to prepare and respond to an outage. Higher levels of DR require increasing
amounts of eventualities that one would have to plan for. We will look at the different
levels, and specifically at the database mechanisms required for each level. Finally,
we will see how these mechanisms can be fully automated with ClusterControl, a
management platform for open source database systems.

Introduction

5

Is 100% Uptime Possible?
Is 100% uptime and availability possible? If it is possible, then why compromise on the
SLA? Unfortunately, there is no such thing as 100% uptime.

One might be misled to believe that 100% is possible. For instance, hosting companies
make a big deal about uptime guarantees. Those who actually offer an 100% uptime
guarantee will usually specify exceptions:

• Planned outages (e.g. server or network maintenance)
• Failure of network, power or facilities delivered by an upstream provider
• DOS attacks, hacker activity or other malicious events
• Acts of God (e.g., weather related - hurricane, flood)

Some providers may offer compensation in order to honour the ‘100% guarantee’,
for instance in the form of service credits. While this is attractive in a marketing pitch,
it certainly won’t stop your service from going offline or compensate you for lost
business.

So, if we cannot achieve 100% uptime, what does it take to get close to 100%? Reducing
downtime comes down to RTO (Recovery Time Objective) and RPO (Recovery Point
Objective). The former refers to the last point in time that, in our case the database,
can be recovered to. The latter is about how quickly databases can be recovered and
operations resumed.

To minimize data loss, we need to have multiple copies of data in multiple places. We
design our infrastructure in different layers and abstract each layer from the one below
it. For instance, we build clusters of database instances so we can protect ourselves
against a hardware failure. We replicate databases across datacenters so we can protect
ourselves against a datacenter failure. Every additional layer adds complexity, which can
become a nightmare to manage. And then, there is the cost.

Typically, the lower the downtime, the more the database will cost to run. We have to
mitigate issues on several fronts, so we build redundancy into all the different layers.
And because low downtime numbers often come with an increase in infrastructure
complexity, the associated administrative overhead follows a similar curve. A high-
availability database might find you managing a distributed setup with physically
separated datacenters, redundant replication channels, management of data
consistency during failovers, and more.

Business considerations for
Disaster Recovery

6

Analysing risk
Outages can be costly, there is often a financial impact and they can do harm to the
business. One common misconception from system owners is the difficulty in achieving
high availability, and how both cost and complexity can escalate exponentially. There
are so many internal and external threats and vulnerabilities that could negatively
impact IT assets - from server failures, data corruption caused by software bugs, and
hacked systems to human error or entire datacenter failures caused by fire or flood.
Risks need to be analysed, with a framework that helps decide what action to take.

Risk matrix

7

For instance, it is possible to use past statistics that show how often a datacenter loses
power or network connectivity.

Based on that, we would know whether:
1. it rarely happens, but the impact is low - so we can live with the risk of it going

down
2. it rarely happens, but the impact is high - so we need to plan the steps on how

to address it
3. it happens frequently, but the impact is low - so will take appropriate steps to

minimize the likelihood of it happening
4. it happens frequently, and the impact is high - so we will actively work on

mitigating the risk

Assessing business impact
Some applications are more important than others because they serve the business as
a whole. To assess the importance of a database, we need to understand what the data
means to the business and what business function it enables. What would the impact be
on the organization if that business function cannot be performed? Which applications
and databases does that function rely on?

Database Criticality № of users affected RTO RPO Owner
Authentication High High 5 min 4 hours Security team
Website DB Medium Medium 12 min 2 hours DBA team
Reporting DB Low Low 8 hours < 1 min DBA team

Business impact is not always easy to measure. SLA breach leading to fines would be
straightforward. Lost sales could be quantifiable based on previous statistics, but it
could also mean lost customers or reputation - the impact of which would be hard to
put a number on.

Classifying databases by criticality

8

A disaster usually causes an outage, which means system downtime and potential loss
of data. Once we have detected the outage, we trigger our DR plan to recover from it.

But first, let’s illustrate all this with a little story. Let’s imagine a train with passengers
going from Stockholm to Oslo, a journey that takes just over 5 hours. The train breaks
down about an hour after leaving Stockholm.

The breakdown is the disaster, which is the point in time when the service stopped.

The disaster recovery plan for the train is the process of calling for help, troubleshooting
the problem, getting spare parts and repairing the train, so it can continue its journey to
Oslo.

DR is not to be confused with Business Continuity (BC), even though the terms are often
used together. BC would be the process of arranging for a replacement train, or some
alternative means of transport, so the services can continue between Stockholm and
Oslo.

Outage Timeline
The focus on uptime and minimizing the risk for failures usually translates into defining
and meeting recovery point objectives (RPOs) and recovery time objectives (RTOs) for
the different layers of the infrastructure.

The below diagram describes the timeline of an outage.

Defining Disaster Recovery?

9

Recovery Time Objective
Recovery Time Objective (RTO) is the maximum acceptable length of time that your
database can be offline. This includes the time to detect the failure, understand what it
is and activate failover/recovery procedures.

Recovery Point Objective
Recovery Point Objective (RPO) is the maximum acceptable length of time during which
committed data in the database might be lost due to a major incident. The metric does
not address the amount of data lost, or the quality of the data.

RPO will vary based on the type of data. Frequently modified customer data could have
an RPO of just a few minutes, whereas less critical, infrequently modified data could
have an RPO of several hours.

RPO + RTO = 0 ?
Is it possible to have zero RPO and zero RTO? Considering the amount of eventualities
that one would have to plan for in order to get there, zero downtime or 100% uptime
seems more like a utopian dream. That is why high uptime is often measured in a
number of 9’s.

Meeting high uptime goals for infrastructure is extremely complicated - it requires
application clustering, database clustering, storage clustering, network bonding,
server load balancing and traffic management, file replication and clustering, database
replication, monitoring, split brain prevention, site to site failovers, data integrity,
security,... the list goes on.

10

As we mentioned earlier, there is no one size fits all solution. The type of database, high
availability configuration and management software we employ will play an important
role on what we can deliver, simply by virtue of the features available. For instance,
there is no shortage of options in the MySQL and MariaDB ecosystem for meeting
different levels of DR requirements. In this chapter, we will cover how different tiers of
DR can be addressed by database technology. We’ll see specifically how ClusterControl
can be employed in each DR tier.

1. No Offsite Data
In this tier, DR has not been considered. There is no backup of data or systems. In case
of disaster, it may not be possible to recover the data.

For companies in this category, we would recommend to keep your fingers crossed ...

2. Database Backup with no Hot Site
At this level, the database is backed up and the backup files are archived offsite. In
case of failure of the primary site, the backup files would be safe and secure off-site.
However, there are no systems to restore the backups on, in case the main site would
fail. In the example below, AWS is only used as the offsite archive for backups. We’ll
assume the applications/databases cannot be installed on AWS (hence the ‘no Hot Site’
label).

Depending on how often the backups are created and shipped, one must be prepared
to accept hours or days of data loss. For larger databases, it might not be feasible to do
frequent full backups as they can be time consuming. Taking incremental backups is a

Disaster Recovery Tiers

Uploading and archiving backups on AWS S3

11

way of decreasing the amount of time that it takes to do a backup. Incremental backups
only backup the data that has changed since the previous backup. These two types of
backups can be combined in order to have more up-to-date data in the backups, while
limiting any performance degradation of our production database. Note though that
incremental backups can be time consuming to restore, thus increasing RTO.

To further decrease RPO, we might want to consider backups that are PITR-compatible
(Point in Time Recovery). We will see this in the next DR tier.

Scheduling a backup is not enough, backup data also needs to be verified for
consistency and integrity. The concept of Schrödinger’s backup illustrates the point -
“The condition of any backup is unknown until a restore is attempted”. A notification
that our backup was successfully completed and uploaded offsite is a good start, but
the true test comes when a restore is required.

When creating backups, we can create physical or logical copies of the database.
Different types of backups are useful for recovery from different failure scenarios.

Another consideration is encryption. Backups are at risk if they are not encrypted.
When managed appropriately, encryption provides a layer of security as well as peace
of mind that, should any backup media fall into the wrong hands, the likelihood of data
exposure is slim.

ClusterControl provides backup features that take into account all the above
considerations. It supports a mixture of methods, both physical and logical.

12

The backup files can be encrypted.

One important follow-up item is the state of the created backup. ClusterControl
provides email notifications and will notify about the status.

Backup files can be automatically uploaded to the cloud (AWS S3, Google Cloud
Storage and Azure Storage). Note that it is still important to keep at least a copy
of the latest backup (hopefully verified as well) in the datacenter, since in case the

13

infrastructure comes up again, it is much faster to restore from local backup files as
opposed to having to download them from an external service first, before being able
to start recovery.

Backup details can be viewed from the backup list.

14

When scheduling a backup, it is possible to schedule it for automatic restore
verification.

For this level of DR, we can expect long RTO. The infrastructure needs to be re-created
somewhere, so we’d need to find a datacenter with servers. After that, the backup files
need to be transferred to the new database servers and then restored.

3. Database Backup with Hot Site
At this level, we are making regular backups but we also have a second site with
infrastructure that can be used to restore systems in the event of disaster. Using
this solution, we will have to re-install our database systems (as well as applications,
etc.) from scratch and restore data. Recovery time will be predictable, since we have
the infrastructure and are able to run tests beforehand. In the example below, the
infrastructure can be re-created on AWS, which makes it a hot site. Pre-configured
Amazon Machine Images (AMIs) can be used to quickly provision the application
environment when needed.

RPO can be reduced by taking backups that are PITR compatible (Point in Time
Recovery). The backups would include binary log files, so the database can be restored
at an arbitrary time.

Uploading backups in AWS, with possibility to re-create the database on EC2 infrastructure

15

ClusterControl can be used to deploy the database. For MySQL and MariaDB, it
supports all the major types of high availability setups (MySQL Replication, Galera
Cluster, MySQL NDB Cluster, MySQL Group Replication). Through its cloud integration,
it is able to automatically spin up instances on AWS, Azure and Google Cloud before
deploying the databases. The screenshot below shows the deployment of a Galera
Cluster on AWS.

Once the database is deployed, it is time to restore the latest backup.

16

For lower RPO, we would use Point in Time Recovery. There will be two options for that
- “Time Based” and “Position Based”. For “Time Based”, it is enough to pass the day and
time. “Position Based” is a more precise way to restore, one can pass the exact position
(statement) up to which we want to restore.

The entire process with step by step instructions is described in the blog - Full Restore
of a MySQL or MariaDB Galera Cluster from Backup.

This level of DR has a similar RPO as the previous one, with perhaps a shorter RTO -
since the infrastructure can be instantiated on-demand. Since the backup files would be
within the same network, that should speed up the data recovery phase.

4. Asynchronous Replication to Hot Site
At this level, the hot site has backup infrastructure running. It is continuously kept
up-to-date with the primary site, so it has a near-realtime copy of data. The main
requirement is low RTO. The backup infrastructure has “almost current” data, enabling
fast failover.

In the event of a disaster, there will be little to no data loss. The service can be up and
running with little downtime. Note that backups are still important here, in case we
would lose both the active and the standby system - for instance, if an operator would
happen to drop a table by mistake, and the error would propagate to the standby.

https://severalnines.com/blog/full-restore-mysql-galera-cluster-backup
https://severalnines.com/blog/full-restore-mysql-galera-cluster-backup

17

Low RPO and RTO comes at a cost. This level of DR requires dedicated hardware in the
hot site, ready to take over at any time.

To keep costs low, it is possible to do a minimal configuration of applications and
databases in the DR site. For instance, the primary site could be running a database
cluster, e.g., 3 nodes, replicating asynchronously to a single slave on the DR site. The
same would be true for the rest of the infrastructure, e.g., the primary site would have a
cluster of application servers whereas the hot site might just have one instance. This is
en economical way of providing at least a minimal service.

However, note that the minimal capacity of the hot site might also mean there are
insufficient resources available to provide service to all users, with acceptable quality.
Overload controls need to be in place, so as to either switch off certain non-critical
functions, or to offer minimally acceptable service to selected users. A degraded service
would be offered until the primary site is repaired and service returned to normal.
Alternatively, the hot site can be dynamically scaled out (e.g., turn the slave into a
cluster, and add more application servers) to increase capacity so it can handle the full
workload. Overload control is crucial here, so as to avoid the risk of flooding the hot site
and bringing it down when traffic is failed over to it.

ClusterControl can be used to add an asynchronous slave to an existing setup, as we
can see in the screenshot below. Note that the slave can also be delayed. A mistake on
the master, for example an UPDATE without a WHERE clause, will be replicated nearly
instantly to our slave with disastrous consequences. Having the slave server lagging
behind can help, as we would be able to roll back the delayed slave to the time just
before the destructive command.

Note that, since a delayed slave is lagging behind by a number of minutes (e.g., 30
minutes), we cannot just instantaneously switch over to it or else we would lose that 30
minutes window of data. A regular slave would save us from a number of failures that
would take down our active cluster, whereas a delayed slave would be useful in case of
operator error. Therefore in some cases, we might need to have both a normal slave
server as well as a delayed slave on the hot site in order to address these different risks.

Using ClusterControl, the slave can be built from a freshly streamed backup from the
master to the slave. Or the slaved can also be staged from an existing backup, before it
is connected to the master and catches up with it.

Asynchronous Replication from Primary Site to AWS

18

Finally, note that the failover to the hot site is manual. The DR team will be in charge of
moving traffic over to the hot site. Once the primary site is repaired and it comes back
up again, we will have to reverse the replication flow to synchronize data. Failback is
possible once the data on the primary site is up-to-date.

5. Synchronous Replication to Hot Site
Finally, for the highest tier of DR, we would have redundant copies of our data in
at least 2 hot sites. This is for businesses aiming at minimal RTO and RPO. Data is
synchronously replicated across 3 sites. All the 3 sites are ‘masters’, i.e., they are all
able to provide service to users. This is for businesses with little or no tolerance for
data loss and who need to restore data to applications rapidly. Failover can be almost
instantaneous, since the sets of data on the primary site and the hot site have the same

19

transactional state. Failure detection time will be the main culprit that adds to the RTO
here. But once the failure is detected, failover is instantaneous and automatic.

Note here that 2 sites will not be enough for failover to be automatic, as there is no way
to detect a network partition and a resulting split brain situation. Split brain is when a
cluster of nodes is partitioned into e.g. two smaller clusters after a temporary failure of
network links. Two partitions of equal number of nodes are created, and each partition
believes it is the only active cluster. This is a harmful state, as data is changed on either
partition, without having been replicated to the peer. In this situation, it is likely that
two diverging sets of data will be created, which cannot be trivially merged. Galera
Cluster is a multi-master replication technology for MySQL and MariaDB. It operates in
a way that, in case of network partition, only the partition holding the majority of nodes
will be allowed to operate. Therefore, having 3 datacenters with 2 nodes each would
ensure that the system can tolerate the failure of one datacenter. It is common to use
datacenters in separate geographical regions, although in a cross-region scenario, there
is more latency between the nodes due to the longer network channels.

In the words of Amazon’s CTO Vernal Vogel’s, “Everything fails, all the time”. And
we know from experience that entire cloud regions can fail, regardless of vendor.
Therefore, having the hot site(s) in a separate region can help so as to get away from
dependencies that may exist between datacenters in the same region (e.g., Amazon
Availability Zones). A multi-cloud DR strategy further reduces dependencies. We have
seen previously that regional failures have sometimes cascaded to other regions, for
instance, when a region gets a sudden surge in traffic as thousands of services are
started at the same time.

20

Distributed database setups across multiple datacenters can be complex for
applications to keep track of. For instance, failed instances or instances that are
undergoing a recovery process should not be receiving traffic. Perhaps there are
strategies around sending database updates to a specific set of nodes. Hence the need
for a database proxy that can control traffic to the cluster, and at the same time abstract
the complexity of the database layer from the applications.

ClusterControl supports the deployment of databases across the main cloud vendors -
Amazon Web Services, Microsoft Azure and Google Cloud.

21

It also supports multiple database proxies on top of distributed database configurations.
This allows administrators to easily set up routing rules for database traffic, and ensure
that applications can easily connect to the setup via a single VIP.

22

Organizations have historically deployed tape backup solutions as a means to protect
data from failures, however the emergence of public cloud computing has also
enabled new models with lower TCO than what has traditionally been available. It
makes no business sense to abstract the cost of a DR solution from the design of it, so
organizations have to implement the right level of protection at the lowest possible
cost.

Those who require higher levels of DR would architect for availability, and the
technology is available today for cross-region multi-master MySQL and MariaDB
database systems. From a 2017 survey of over 1000 datacenter executives around the
globe conducted by Uptime Institute1, over 68% have deployed some form of multi-
site resiliency strategy. This is evidence that more companies are beginning to deliver
mission-critical IT services through distributed data centers, either using synchronous
eller asynchronous replication to a hot site.

It is good to have failover by design, but actual failover tests are important to know
that it actually works. As Netflix put it when they released their Chaos Monkey disaster
testing system, ‘the best defense against major unexpected failures is to fail often”.
There is probably not many organizations who can claim that2.

So what is holding these organisations back from testing their DR plan? The main
reasons are down to cost and process complexity. There is an abundance of HA
technologies designed to protect against different kinds of hardware or software
failures. However, the more products we implement to protect against those, the more
complex the environment becomes. Complexity makes systems harder to manage, and
more prone to human errors. Complexity also has consequences in how DR processes
are designed, and how ops teams interact with production systems when a DR plan is
activated.

ClusterControl makes meeting the required SLA targets viable and cost-effective by
wrapping the complexity of managing multiple operational procedures into a single
product. We also expect the public cloud to become an integral part of the modern
organization’s DR plan, because the amount of data that we’re having to manage and
protect is increasing faster than IT budgets. Despite the costs involved, disaster recovery
is not an option.

1 https://uptimeinstitute.com/webinars/2017_data-center_industry_survey_results
2 https://www.zetta.net/resource/state-disaster-recovery-2016

In Conclusion

https://uptimeinstitute.com/webinars/2017_data-center_industry_survey_results
https://www.zetta.net/resource/state-disaster-recovery-2016

23

ClusterControl is the all-inclusive open source database management system for
users with mixed environments that removes the need for multiple management
tools. ClusterControl provides advanced deployment, management, monitoring, and
scaling functionality to get your MySQL, MongoDB, and PostgreSQL databases up-
and- running using proven methodologies that you can depend on to work. At the core
of ClusterControl is it’s automation functionality that let’s you automate many of the
database tasks you have to perform regularly like deploying new databases, adding and
scaling new nodes, running backups and upgrades, and more. Severalnines provides
automation and management software for database clusters. We help companies
deploy their databases in any environment, and manage all operational aspects to
achieve high-scale availability.

Severalnines provides automation and management software for database clusters. We
help companies deploy their databases in any environment, and manage all operational
aspects to achieve high-scale availability.

Severalnines’ products are used by developers and administrators of all skills levels to
provide the full ‘deploy, manage, monitor, scale’ database cycle, thus freeing them from
the complexity and learning curves that are typically associated with highly available
database clusters. Severalnines is often called the “anti-startup” as it is entirely self-
funded by its founders. The company has enabled over 12,000 deployments to date
via its popular product ClusterControl. Currently counting BT, Orange, Cisco, CNRS,
Technicolor, AVG, Ping Identity and Paytrail as customers. Severalnines is a private
company headquartered in Stockholm, Sweden with o ces in Singapore, Japan and the
United States. To see who is using Severalnines today visit:

https://www.severalnines.com/company

About Severalnines

About ClusterControl

https://www.severalnines.com/company

24

How to Design Highly Available Open Source
Database Environments
These days high availability is a must for any serious
deployment. Long gone are days when you could schedule
a downtime of your database for several hours to perform a
maintenance. Making a database environment highly available is
one of the highest priorities nowadays alongside data integrity.
For a database, which is often considered the single source
of truth, compromised data integrity can have catastrophic
consequences. This whitepaper discusses the requirements
for high availability in database setups, and how to design the
system from the ground up for continuous data integrity.

Download whitepaper

The DevOps Guide to Database Backups for
MySQL and MariaDB
This whitepaper discusses the two most popular backup
utilities available for MySQL and MariaDB, namely mysqldump
and Percona XtraBackup. It further covers topics such as how
database features like binary logging and replication can be
leveraged in backup strategies. And it provides best practices
that can be applied to high availability topologies in order to
make database backups reliable, secure and consistent.

Download whitepaper

Management and Automation of Open Source
Databases
Proprietary databases have been around for decades with a rich
third party ecosystem of management tools. But what about
open source databases? This whitepaper discusses the various
aspects of open source database automation and management
as well as the tools available to efficiently run them.

Download whitepaper

Related Whitepapers

Management and Automation
of Open Source Databases

https://severalnines.com/resources/whitepapers/how-design-highly-available-open-source-database-environments
https://severalnines.com/resources/whitepapers/devops-guide-database-backups-mysql-and-mariadb
https://severalnines.com/resources/whitepapers/management-and-automation-open-source-databases

25

	Introduction
	Business considerations for Disaster Recovery
	Is 100% Uptime Possible?
	Analysing risk
	Assessing business impact

	Defining Disaster Recovery?
	Outage Timeline
	Recovery Time Objective
	Recovery Point Objective
	RPO + RTO = 0 ?

	Disaster Recovery Tiers
	1. No Offsite Data
	2. Database Backup with no Hot Site
	3. Database Backup with Hot Site
	4. Asynchronous Replication to Hot Site
	5. Synchronous Replication to Hot Site

	In Conclusion
	About ClusterControl
	About Severalnines
	Related Whitepapers

