
1

APPLICATION

LOAD BALANCER
HAPROXY

MYSQL
REPLICATION

REPLICA

READ

MONITORING
MANAGEMENT

CLUSTERCONTROL

MySQL Replication
Blueprint

2

3

Table of Contents
1. Introduction 4

2. Why a Blueprint for Replication? 5
 2.1. Replication in the pre-MySQL 5.6 era 5
 2.2. Making MySQL Replication Production Ready 5
 2.3. GTID - A Stronger Foundation for Replication 6

3. Introducing the MySQL Replication Blueprint 8
 3.1. Deployment 8
 3.2. Master/Slave 9
 3.3. Multi Master 9
 3.4. Parallel replication 10
 3.5. Multi source replication 1 1
 3.6. Management & Monitoring 11
 3.7. Load balancers 12

4. Monitoring 13
 4.1. Availability 13
 4.2. Performance 13
 4.3. Alerting 14

5. Management 15
 5.1. Replication topology changes 15
 5.2. Adding new slaves 15
 5.2.1. Why would you delay a slave? 15
 5.3. Repairing a broken replication topology 16
 5.3.1. Slave promotion 16
 5.3.2. Most advanced slave without GTID 16
 5.3.3. Most advanced slave with GTID 17
 5.3.4. Automated slave promotion 18
 5.4. Backups 18
 5.4.1. Logical or physical backups? 18
 5.4.2. Do you need full or incremental backups? 18
 5.4.3. Scheduling 19
 5.4.4. Testing your backups 19
 5.5. Updating to a newer version 19
 5.6. Schema changes 19
 5.7. Configuration changes 20

6. Load Balancing 21
 6.1. What are the benefits of proxies? 21
 6.2. Read/Write splitting 22
 6.3. Which proxy to choose? 22
 6.4. Query Caching 23
 6.5. Query rewrites 23

7. About Severalnines 24

8. Related Resources from Severalnines 25

4

Introduction
MySQL Replication has become an essential component of scale-out architectures in
LAMP environments. When there is a necessity to scale out, MySQL off ers a multitude
of solutions, the most common being to add read replicas. The major bottleneck for
our data is generally not so much oriented around writing our data but more around
reading back this data. Therefore the easiest way to scale MySQL is to add replicas for
reading.

The traditional master-slave solution comes with a major fl aw: the master is a single
point of failure. To overcome this, various solutions emerged that run on top of the
MySQL replication topology and try to make it highly available. Tools like MySQL Multi
Master (MMM), MySQL HA Master and Percona Replication Manager can manage your
replication topology but they do have their cons: in general they are quite diffi cult to
set up and in some cases create another single point of failure. Clustering software like
Corosync is able to improve this a bit, but introduces even more complexity.

With today’s cloud environments, where resources are dynamically allocated and
deallocated, systems need the ability to automatically adapt to sudden changes. For
MySQL Replication, this includes tasks like detecting failures, promoting a slave to
master, failing over slaves, and so on.

A load balancer with Virtual IP can also help mask topology changes from the
application, and dispatches read and write traffi c appropriately.

Systems also undergo confi guration changes or version upgrades. Management
procedures for these need to be orchestrated so all the system components are in sync.
As we’re assembling a system from independent, standalone components, how do
we know if something breaks? Therefore, monitoring would be an integral part of any
system that goes in production.

Building a production-ready system around MySQL Replication is a major undertaking,
but not an impossible one. Facebook, Twitter and Booking.com run thousands of
masters and replication slaves in their data centers. These companies invested heavily
in building tools to address these issues so they could run replication at scale. The
purpose of the Blueprint is to provide an integrated framework for addressing the
operational aspects of MySQL Replication.

5

2.1. Replication in the pre-MySQL 5.6 era
MySQL Replication has been around for a very long time. It was introduced 15 years
ago, in MySQL 3.23. While MySQL itself went through massive improvements over the
years, the replication functionality remained pretty much the same - single threaded,
easy to break, hard to retain consistency or change topologies, etc. Although it was
easy to set up, it has always been a challenge to support and maintain in production -
not great in an age of cloud computing and dynamic infrastructures.

In the meanwhile to solve the problems around Replication, we saw the emergence
of various tools that ran on top of the MySQL replication topology. To perform
master failover or slave promotion, MySQL Multi Master (MMM), MySQL HA Master
and Percona Replication Manager became available. These tools can manage your
replication topology but they do have their pros and cons: in general they are not
simple to set up, some consist of of chained components that can fail and slave
promotion without the concept of a global transaction identifi er remains fragile. Also
these tools solely focus on retaining the replication topology with a master and do not
address the other aspects of a replication topology like making backups or scaling out
replicas.

With 5.6 and more recently 5.7, MySQL Replication has gone through a total
transformation. Features like Global Transaction Identifi ers make it easy to maintain
consistency in dynamic changing replication topologies. Which begs the question - how
relevant are these tools that were written to address issues that existed in the pre-
MySQL 5.6 era?

2.2. Making MySQL Replication Production Ready
What makes a MySQL Replication setup production ready? Is it enough to enable the
binlog on a master and have slaves read from it?

Unfortuntely, a production environment requires quite a bit more planning than that.
How do we ensure our replication setup is working properly? How do we ensure slaves
are in sync with the master? What do we do if replication is slow, or stalls? How do we
handle the failure of a master or a slave server? How do we ensure applications write
to the right master, and read from the right slave? What if we need to replace a server?
How are confi guration changes performed, and propagated across the replication
chain? What about database upgrades and schema changes, can we do them without
service downtime? How do we shield applications from all these changes? Do we need
to modify our application so it is aware of which server to write to? What about adding
capacity? Disaster recovery and data lost? The list goes on.

A holistic approach on replication means setting up a topology from end to end, with a
clear understanding about the workings of the replication topology. Deployment of the
nodes can be automated using Puppet, Chef or Ansible but this has the downside that
these tools need to understand the workings of the topology as well. Which host would
become the master, which host would become a replica? How do we ensure post-

Why a Blueprint for
Replication?

6

deployment confi guration changes are applied across all servers, even if the topology
has changed from its original form? In other words: your automated deployment has to
intelligent, understand your replication topology inside out and keep itself up-to-date
with any changes. Are these automation tools designed to be this intelligent?

Failover tools can promote one of the replicas to become the new master and generally
use Virtual IP addresses to manage the change instantly. These failover tools often rely
on third party tools like Corosync and Pacemaker which are not trivial to set up.

When Virtual IP addresses cannot be used, another way of “advertising” the new master
is necessary. A popular choice is to use confi guration managers, like Zookeeper and
Consul, but these confi guration managers need to be able to understand the topology
and monitor it closely. Another way to handle this is by adding a load balancer between
the application and the database.

Popular load balancers like HAProxy, MaxScale, ProxySQL need to be confi gured so
they understand the topology. Confi guration of these tools is usually done separately
from your failover tool and this also requires double administration. Keep in mind that
not every failover tool is a good combination with another load balancer: MaxScale
monitors the master node by itself so it could be the case it reaches a diff erent
conclusion than MHA (MySQL Master HA) whether a node is up or down.

As we can see, there are quite a few components here - all of which require the right
confi guration to understand and maintain topology logic.

As those separate tools may have a diff erent approaches and/or implementations,
this could lead to a wrong synergy between the tools. Since they were not designed
to work together, any topology change means your have to reconfi gure all the various
tooling.

2.3. GTID - A Stronger Foundation for Replication
The Global Transaction Identifi er (GTID) was introduced in MySQL 5.6 to identify and
associate each transaction to its server of origin. This is important as within a replication
topology, not only the transaction identifi ers need to be unique per server but also for
the whole topology.

Without GTID, a MySQL server would log its slave updates in its own binary log in the
exact same order as they were logged on the master. As it writes to its own logs, it used
a diff erent numbering for the log position of each transaction. Thus it is very diffi cult to
fi nd the log position of the same transaction between two servers. An automated tool
like MySQL HA Master (MHA) would address this type of problem, but without that, you
generally need to scan through the binary logs to fi nd the same position.

Why is this important? If the master would fail in a multi node replication topology,
the most advanced slave is promoted to become the new master and the other slaves
need to realign their replication with the new master. Thanks to the GTID, the new slaves
can now fetch the binary logs from the new master and fi nd the correct position by
themselves. This retains data integrity after failover.

Keep in mind that the GTIDs between MySQL and MariaDB diff er, they cannot be
mixed in the same topology. In MySQL, the GTID is composed by using the server’s
UUID and appending to that a sequence number. In MariaDB, this is done diff erently
by combining the domain, host and sequence number into the GTID. In both cases, this
makes it a unique identifi er within the replication topology.

7

Changing from non-GTID to GTID requires reconfi guration of all the nodes in your
topology. You can prepare all your replica nodes to enable GTID, however as the master
node is the one that generates the transactions, the master should be reconfi gured
before the GTID becomes eff ective. This means you will certainly have downtime for all
nodes.

8

The MySQL Replication Blueprint is about having a complete ops-ready solution from
end to end including:

• installation and confi guration of master/slave MySQL servers, load balancers,
Virtual IP and failover rules

• Management of the topology, including failure detection, failover, repair and
subsequent reconfi guration of components

• Managing topology changes when adding, removing or maintaining servers
• Managing confi guration changes
• Backups
• Monitoring of all components from one single point

3.1. Deployment and Confi guration
Deployment of the topology is your starting point where you deploy all the necessary
nodes in your topology: the master, the slaves, the load balancers but also the hosts
that will run the monitoring and management software.

Preferably you would deploy your hosts in an automated way, for instance through
Puppet, Chef or Ansible. These deployment tools can also set up replication correctly,
but keep in mind that if you do this, the replication should only be set up once
during the initial bootstrap of your replication topology: you don’t want to have your
confi guration management tool stop and start replication everytime it changes a
confi guration value. Replication can be set up in many diff erent ways.

Introducing the MySQL
Replication Blueprint

9

3.2. Master/Slave
This is the most basic topology possible: one node acts as the master and another acts
as the replica node (slave). The replica node will receive all transactions written on the
master.

As shown in the diagram, the master node will receive all the write operations while
both the master and replica(s) can be used to receive read operations. The strength in
this topology lies in the fact that the read operations can be scaled by adding additional
replicas of the master.

In theory you could perform write operations on the replica nodes. However as the
replication stream goes from the master to the replica nodes, these writes will never be
propagated back to the master node. You would get inconsistency of data between the
master and replica nodes. Therefore these replica nodes should be set to read_only=ON
in MySQL to ensure this can never happen.

3.3. Multi Master
Multi Master is similar to the Master/Slave topology, with the diff erence that both
nodes are both master and replica at the same time. This means there will be circular
replication between the nodes. It is advisable to confi gure both servers to log the

10

transactions from the replication thread (log-slave-updates) but ignore its own already
replicated transactions (set replicate-same-server-id to 0) to prevent infi nite loops in the
replication. This needs to be confi gured even with GTID enabled.

Multi master topologies can be confi gured to have either a so called active/passive
setup where only one node is writable and the other node is a hot standby. Then there
is the active/active setup where both nodes are writable.

Caution is needed with active/active as both masters are writing at the same time and
this could lead to confl icts if the same dataset is being written at the same time on both
nodes. Generally this is handled on application level where the application is connecting
to diff erent schemas on the two hosts to prevent confl icts. Also as two nodes are writing
data and replicating data at the same time they are limited in write capacity and the
replication stream could become a bottleneck.

3.4. Parallel Replication
As MySQL replication is asynchronous, the single thread applying the replicated data
can become the bottleneck, especially when DDL changes are sent via replication. DDL
changes will block replication until the DDL change has been applied.On large tables,
this could take a while.

11

In principle, the parallel replication, also known as multi-threaded slave, is similar to
the Master/Slave or Multi-Master topology, but this tackles the problem of the single
threaded applier. Parallel replication has been implemented in various way: replicate
queries per schema in parallel (MySQL 5.6), tagging non confl icting writes (MariaDB
10.0), group committing large write sets (MariaDB 10.0 and MySQL 5.7). In theory this
should allow you to increase the effi ciency of replication.

3.5. Multi source Replication
Multi source replication is supported as of MariaDB 10.0 and MySQL 5.7 . Basically this
means that a replica is allowed to replicate from multiple masters. To enable this, the
replica should not have multiple masters writing to the same schema as this would lead
to confl icts in the write set.

Multi source replication is currently not widely supported by replication tools. In general
these tools use the output from SHOW SLAVE STATUS to determine the replication state
of the replicas. With multi source replication, there are several replication channels and
thereby multiple replication streams. Therefore it is not advised to use multi source
replication in combination with a replication manager unless you have tested this
thoroughly. The alternative is to make the slave an unmanaged replica.

Why would you need multi source replication? Multi source replication may be suitable
for data warehousing needs, delayed slaves or data locality in some cases. Especially
if multiple database clusters are not utilizing their full write capacity, it may save a few
hosts by consolidating multiple slaves into one node.

3.6. Management & Monitoring
In addition to the initial replication setup, one might need a replication manager to
both monitor the replication stream and react upon any issues if necessary. Why would
you need to manage replication unless it breaks? There are two reasons for this: you
may want to ensure slaves are not lagging behind the master. In cases of maintenance,
you would need a tool that allows you to perform a master failover in a controlled

12

manner. In cases of failure, you might want some automatic failover functionality.

A good replication manager should be able to monitor both the master and replicas.
It should only failover when necessary and should have protection against fl apping
(failover consecutively). There are various replication managers that will suit your needs,
but in our experience MySQL Master HA (MHA) is one of the most used replication
managers which also supports the MySQL GTID.

3.7. Load balancers
As described earlier, working with confi guration manager for your application requires
additional logic to reconfi gure your application whenever necessary. If you already have
a confi guration manager like Zookeeper or Consul in your environment, it would be
good to use them Otherwise the extra work to install and set up these tools might less
sense. Instead, you might want to consider using a load balancer.

For load balancing of MySQL, the most used solution is HAProxy. HAProxy is a layer
4 proxy, meaning it will only route on basis of TCP and UDP traffi c. This makes it an
extremely simple and stable proxy. MaxScale and ProxySQL both operate on layer
7, meaning they will understand the queries that pass by. MaxScale and ProxySQL
are relatively new, but have the added benefi t of allowing to split reads and writes
separately from existing mixed connections. In all cases, you can use the load balancer
to understand the replication topology and route the traffi c to the master: HAProxy will
need a few more snippets to implement than ProxySQL and MaxScale, which do that
out of the box.

By introducing load balancers you will make MySQL more highly available as you can
now transparently promote a slave to become the new master, or in case of a failure, act
accordingly. However by introducing a load balancer you will introduce another single
point of failure (SPOF), so you need to add a second load balancer to take over if the
fi rst one fails. This can be done in a much more simplistic fashion than with a MySQL
failover: if the load balancer fails on TCP level, you need to failover to the second load
balancer, or use Virtual IP address if you can use them in your environment. Keepalived
can manage this type of failover and add high availability to the load balancing layer.

13

Monitoring is about keeping an eye on the database servers and alerting if something is
not right, e.g., a database is offl ine or the number of connections crossed some defi ned
threshold.

The components in the replication topology would do some kind of monitoring. This
includes the replication manager, the load balancers and the slaves ‘monitoring the
master. But does this give us visibility into our entire setup? What are the requirements
for monitoring?

4.1. Availability
To check the availability of MySQL, it is not enough to open a connection and perform a
query like “SELECT 1”. A host may allow new incoming connections and perform simple
queries, but a SELECT 1 does not test anything important at all. You need to know
the true status of the node, so for availability you would like to know if the essential
schemas are available, if you can read and/or write to one of these schemas and if the
node is still part of the replication topology.

Availability monitoring for MySQL is off ered in MonYog, Percona Monitoring Plugins
(Cacti & Nagios) and Zabbix.

4.2. Performance
Performance monitoring is essential for you to have insights in the health of your
systems. Simply relying on availability monitoring is like sailing in the dark and hoping
there will be no storm. Performance monitoring can give you insights in the capacity
of your systems and how much of the resources are still available. It also helps predict
when you need to scale up or out by plotting trends on for instance IO capacity/IOPS,
CPU and memory usage.

With respect to replication, it is essential to monitor the slave lag as lagging slaves
will be removed from the replication topology by most failover tools. Also if you end
up with lagging slaves, the failover tool has to wait until the slave has caught up and
applied all pending transactions and this slows down the failover process.

Trending is essential for performance monitoring so make sure your monitoring
software keeps historical data. For some of the standard monitoring suites, the
granularity/sampling of the data is really low so the insights you will get from that can
be coarse. For instance an average of the connections made in the past 5 minutes will
not give you any insights on why you are hitting max_connections every now and then.
Therefore you can also use additional software that is more suitable for keeping fi ne
grained data points like Grafana, Prometheus and Infl ux DB or a hosted solution like
VividCortex.

Monitoring

14

4.3. Alerting
Obviously it will be a pain to constantly keep an eye on all the graphs and overviews,
therefore alerting should be in place to draw attention to (potential) problems and
outages. Most monitoring systems have a way to push messages to alerting services
like PagerDuty, OpsGenie and VictorOps. Alternatively you could also have these
services connect to (custom) APIs.

The management of a replication topology covers a wide range of tasks, and it is very
unlikely that you will fi nd one tool to handle everything. Therefore it is very common for
ops teams to build their own custom solutions from readily available tools and utilities.

15

5.1. Replication topology changes
Database setups are never static. You might need to add more nodes for scaling
purposes. You might need to perform maintenance on your servers, and reconfi gure
the topology while this is ongoing. At some point, it might be necessary to migrate
to new servers or a new data center. And in case the unexpected happens, e.g. a
replication master fails, you will need to promote a new master and subsequently
reconfi gure slaves and load balancers.

5.2. Adding new slaves
Adding new slaves in your replication topology means you are scaling out your
cluster. In the deployment chapter, we described that all you have to do is point a
freshly installed replica to the fi rst item in the master’s binary logs. This should create
an identical copy. But what if you already have a MySQL node with a large dataset
running?

This can be done by priming the replica with a fresh copy of the master data. Creating
a consistent dataset from the master can be done using Xtrabackup where it is also
capable of registering the current log position of the master. This is extremely useful for
setting up new replicas.

The diff erence between deployment and adding a slave comes when you need to
add the new slave to the topology and make it available for use by your applications.
Information about the topology change should be propagated throughout the
topology (database instances, monitoring, failover tools and load balancers).

Scaling out replicas does have a side eff ect: every node replicating from the master will
create a replication thread on the master. Creating many (50+) replication threads will
create signifi cant load on the master, as it will be busy with sending the right data from
the binary logs to its replicas.

5.2.1. Why would you delay a slave?
We mentioned the Delayed Slave briefl y as one of the reasons you might need multi
source replication. The delayed slave is invaluable for those who need quick access to
their data as it was one hour or maybe 24 hours before. The reason can vary between a
“wrong code deployment that ate all your data” and “hackers wiped all our sales data”.
In MySQL 5.6, you can start delayed replication using the change master to syntax with
the addition of the delay (1 hour in this example):

For older versions and MariaDB you can use pt-slave-delay as an alternative.

1 CHANGE MASTER TO …
2 MASTER DELAY = 3600;

Management

16

Due to the delayed slave, you can quickly recover your data right up to the moment
when it happened:

1. Stop the delayed slave from replicating

2. Find the binary log entry on the master that wipes the data

3. Start the delayed slave and let it catch up with the master up till the wrong log
entry

4. Promote slave to master

These four simple steps should get you back in business in no-time. This obviously still
does not resolve the initial reason why your data got lost or corrupted.

5.3. Repairing a broken replication topology
MySQL Replication can be fragile: whenever it encounters a connectivity error, it will
retry and if it is a serious error it will simply stop. Obviously in the latter case, you will
need to repair the broken replication yourself.

Most common problems with replication are when replication stops due to either
master failure or network problems. In those cases, promoting a slave to become a new
master will resolve the problem. This failover scenario will be discussed below.

Also the replication can break due to data inconsistency. Data inconsistency can happen
due to data drift, but since the arrival of row based replication (RBR) this happens less
frequently. The best way to resolve this is by providing a fresh copy of the master’s data
to the replica and redefi ning the replication stream.

5.3.1. Slave promotion
In case the master fails the whole topology becomes read-only and this means the write
queries can’t be applied anymore. This is where normally you would promote one of the
replicas to become the new master. To illustrate the diff erence in promotion between
GTID and non-GTID cases we will go through the manual promotion below.

5.3.2. Most advanced slave without GTID
The fi rst step in this promotion is to fi nd the most advanced slave. As the master is
no longer available, not all replicas may have copied and applied the same amount of
transactions, so it is key to fi nd the most advanced slave fi rst.

1 STOP SLAVE;

1 mysqlbinlog --start-datetime=”2016-03-09 08:15:00”
--stop-datetime=”2016-03-09 13:12:00” /var/lib/mysql/
bin_master.000036 | grep -i -B 25 “DROP TABLE orders”

1 START SLAVE UNTIL MASTER_LOG_FILE = ‘bin_mas-
ter.000036’, MASTER_LOG_POS = 46626626778;

17

We fi rst iterate through all replicas to see which one is the furthest in the last binary log
and elect this host to become the new master.

Then the next step is to advance the other replicas to the latest transactions on the
candidate master. As the replicas are logging their slave updates in their own binary
logs they have a diff erent numbering for their own transactions and thus it is very
diffi cult to match this data. An automated tool like MySQL HA Master (MHA) is capable
of doing this, so when you are failing over by hand you generally are scanning through
the binary logs or skipping these transactions.

Once we have done this we tell the replicas to start replicating from the designated
points of the new master.

5.3.3. Most advanced slave with GTID
By far the greatest benefi t of using GTIDs within replication is that within the replication
topology, all we have to do is to fi nd the most advanced slave, promote it to master,
and point the others to this new master.

So the most advanced slave is the same as without GTID:

1 CHANGE MASTER TO
2 MASTER_HOST = ‘new.master’,
3 MASTER_PORT = 3306,
4 MASTER_USER = ‘repl’,
5 MASTER_PASSWORD = ‘repl’,
6 MASTER_LOG_FILE = ‘binlog.000002’,
7 MASTER_LOG_POS = 1446089;

1 SHOW SLAVE STATUS\G
2 ************************ 1. row ****************************
3 Slave_IO_State: Waiting for master to send event
4 Master_Host: 10.10.12.11
5 Master_User: repluser
6 Master_Port: 3306
7 Connect_Retry: 60
8 Master_Log_File: binlog.000003
9 Read_Master_Log_Pos: 1447420
10 ...
11 Exec_Master_Log_Pos: 1447420

1 ************************ 1. row ****************************
2 Slave_IO_State: Waiting for master to send event
3 Master_Host: 10.10.12.14
4 Master_User: repl
5 Master_Port: 3306
6 Connect_Retry: 60
7 Master_Log_File: binlog.000003
8 Read_Master_Log_Pos: 1590
9 ...
10 Exec_Master_Log_Pos: 1590

18

Finding out which part of the binary logs the other hosts are missing is not necessary,
as the new master’s binary logs already contain transactions with the GTIDs of the dead
master and thus the slaves can realign with the new master automatically. This applies
to both MariaDB and MySQL implementations of GTID.

As you can see this is a far more reliable way of promoting a slave to a master without
the chance of loss of transactions. Therefore GTID failover is the preferred way in
ClusterControl.

5.3.4. Automated slave promotion
You can use automated slave promotion software like MySQL MasterHA (MHA),
MariaDB Replication Manager with MaxScale (MariaDB only), Percona Replication
Manager (PRM) or Orchestrator.

5.4. Backups
Making backups is useful for disaster recovery or providing copies of your production
data for development and/or testing. Backups for MySQL can be made through
creating either a logical backup or a physical backup. The diff erence between the two
is that a logical backup is a dump of all records in the database while the physical
backup is done by copying the fi les from the MySQL data directory. Logical backups
can be made using mysqlbackup and physical backups using Xtrabackup or fi lesystem
snapshots.

Always create the backup on the node with the least impact, so if possible always make
a backup on a replica and preferably not on a master node. Even though snapshots and
Xtrabackup have relatively low overhead, it may very well be that another (analytics) job
gets scheduled at the same time and the combined stress can be the tipping point.

5.4.1. Logical or physical backups?
The logical backups generally take more time to make as while scanning through the
data the queries also have to be constructed. Also for MyISAM tables the logical backup
will put a lock on the tables while dumping the data to ensure a consistent copy is
made.

Filesystem snapshots may seem to be favorable due to their low impact on the system
and them being a snapshot of the fi lesystem. However they take more time to recover if
you only need to recover single tables or single rows.

5.4.2. Do you need full or incremental backups?
Mysqldump generally only allows you to create a full copy of your data while
Xtrabackup allows you to make incremental backups since last backup. You do need to

1 CHANGE MASTER TO
2 MASTER_HOST = new.master’,
3 MASTER_PORT = 3306,
4 MASTER_USER = ‘repl’,
5 MASTER_PASSWORD = ‘repl’,
6 MASTER_AUTO_POSITION = 1;

19

have an initial full backup available before you can actually make incremental backups.
Xtrabackup will then only copy the altered data since the last (full) backup. If you have
large backups to make, this can reduce the size of your backups.

Keep in mind that incremental backups will not decrease the time it takes to make the
backups: Xtrabackup still needs to scan through the InnoDB fi les of all schemas and
tables to fi nd the altered data. Also restoring an incremental backup can take more
time than restoring a full backup so if restore time is your biggest concern: stick to full
backups.

5.4.3. Scheduling
Schedule your backups always during off -peak to ensure the least number of users
will be impacted. Scheduling tools/backup suites are available that can handle the
scheduling for you and also report if anything went wrong. Good choices are MySQL
Enterprise Backup, Bacula, Zmanda Recovery Manager (ZRM) , Holland Backup and
ClusterControl.

5.4.4. Testing your backups
You can make all the backups you like, but they are worthless if they have not been
tested. It is essential to regularly test/check your backups. These tests can range from
simply decompressing the archive fi les, starting MySQL using the data from the backup
to rebuilding a slave and adding it back to the replication topology.

5.5. Updating to a newer version
Updating to newer major versions can be tricky. New features like the introduction of
GTID after updating from 5.5 to 5.6 requires a full restart of the replication topology,
meaning all nodes in the topology should be down at the same time. Therefore always
read and test the upgrade procedure up front.

Updating to minor versions should be less of an issue as they mostly introduce bugfi xes.
Updating does not require you to bring down the whole toplogy at the same time:
you can perform a rolling restart. In a rolling restart you will restart host by host until
you have restarted the whole topology. It is advised to stay up to date with the latest
releases as they also include fi xes for security issues like Heartbleed and DROWN.

5.6. Schema changes
Applying schema changes in a MySQL replication setup can be tricky: DDL changes will
be propagated via the replication to the slaves. With a bit of bad luck, all slaves will be
busy applying the same change to that 800GB table at the same time. As this operation
will take a while, the replication starts to lag behind and the failover software and load
balancers remove all read slaves one by one. The scenario described is not an unlikely
scenario.

A solution is available through the Percona Online Schema Change (pt-osc) that creates
a new table with the new structure next to the existing table, copies the data into the
new structure and creates triggers on the existing table to backfi ll the data to the new

https://dev.mysql.com/doc/refman/5.7/en/upgrading-from-previous-series.html

20

table. Everything is replicated to the slaves and as the data is copied from one table to
another, it will be sent through row updates and thus the slaves will most likely not lag
behind in replication. The Percona Online Schema Change is not fully compatible with
every DDL change, so always test your schema changes prior to applying them on your
production environment!

5.7. Confi guration changes
Confi guration management ties into your deployment mechanism. If you are using for
instance Puppet or Chef, you need to apply your changes in these systems as well. If
you’re not using any confi guration management system, it is advised to keep a copy of
your confi guration fi les inside a (git) repository. Should you make a confi guration error,
you can easily revert back to the previous version.

Also if you are applying confi guration changes, keep in mind that some parameters can
be changed at runtime. You have to make sure that both the confi guration and runtime
parameters are in sync. If not, there might be an unhappy surprise waiting after the
next restart of MySQL. Some monitoring systems, like MonYog, are able to detect these
anomalies and bring them to your attention.

21

To ensure any component in our topology can fail, it has to be a highly available
setup with no single point of failure. The most important component in the MySQL
Replication topology is the master node, as this is a single component where all write
operations end up. As we showed earlier in this paper, it is possible to promote a slave
to master. So, losing a master is not disastrous. However, slave promotion will not
automatically point your application to the correct host to write to.

There is a wide range of methods available to perform an automated failover from
an application perspective. Implementations range from service discovery tools like
Zookeeper and Consul to reconfi gure your applications, to Virtual IP addresses that
will perform the change on network level. Service discovery tools have the downside
that they rely on other tools that understand the topology and make the confi guration
change. On the other hand, the use of Virtual IP addresses isn’t always available or
allowed in (cloud) hosting environments.

At this moment the most frequent deployed solutions are proxies. Popular proxy
solutions are HAProxy, MySQL Proxy, MaxScale and ProxySQL.

6.1. What are the benefi ts of proxies?
A proxy will sit in between the application and the database nodes and route the
traffi c transparently to the correct node in the topology. As described in the previous
paragraph, it allows you to split your database traffi c into a read and write stream, and
ensures they only arrive on the master or the replicas.

The proxy needs to be aware of the replication topology. This is defi ned in the

Load Balancing

22

confi guration of the proxy. In case of change of master, a manual reconfi guration
is necessary for HAProxy. MaxScale and ProxySQL can automatically reconfi gure
themselves.

6.2. Read/Write splitting
In general if you wish to scale out MySQL Replication topologies, you’ll want to send all
the write operations to the master and all read operations to the slaves. This means you
will have to somehow handle connections accordingly: ensure you only connect to the
master if you intend to write data.

The easiest solution for this is by adding the read/write split to your application logic.
Only when your application is going to write data, it will create a (second) connection to
the master and write the data. If your application is going to read data, it will connect to
a (random) slave in the topology.

To make this solution easier you could add two ports on a proxy that handle either read
or write traffi c. The read traffi c will be automatically load balanced over all available
read slaves while the write traffi c will be assigned to the current master. In case of a
master failover or a slave promotion, the load balancer will be updated accordingly.
Some of the proxies, ProxySQL and MaxScale, are more intelligent and can connect to
the read slave by default, detect write operations within a transaction and switch over to
the master connection to write this data.

6.3. Which proxy to choose?
At the moment of writing, ProxySQL is a relatively new player on the market and is not
yet supported in ClusterControl. MaxScale off ers the ability to do read/write splitting,
but this comes at the price of overhead and memory consumption at high loads. This
makes it suitable for smaller scale topologies and act as a drop in replacement for a

23

single master topology being scaled out with replicas. HAProxy is a solid and proven
technology and we would recommend it if you are planning for large scale operations.

6.4. Query Caching
ProxySQL is able to perform query caching at the proxy level. In the past 10 years, query
caching in MySQL is considered to be bad, but query caching in itself isn’t. MySQL
query caching is a shared memory space that all connections make use of, this means
any query performing an operation on the query cache will put a lock on it to ensure
consistency. For read operations, this takes maybe a few microseconds but for write
operations it may take a bit longer. Even worse: if a write operation happens the query
cache is invalidated for all entries that contain the same table. Cache evictions do take
quite a lot of time and in high concurrency environment, this could be your biggest
bottleneck.

Still the fastest query on MySQL is the query that never got executed. So if you can
prevent a query from being executed , e.g. using a proxy, it would improve performance
dramatically. Also since the roundtrip time is a lot shorter, as the result is instantly
returned from the proxy. ProxySQL is only caching queries that are defi ned via a regular
expression for a certain amount of milliseconds, so it works similar as you would cache
results via Memcache or Redis. It also doesn’t have a locking mechanism for the cache
and thus it can never be a bottleneck.

6.5. Query rewrites
ProxySQL and MaxScale both off er query rewriting through regular expressions. This
is a very powerful feature as it allows you to change queries while they are being sent
through the proxy. This could help you to survive through the weekend by “correcting”
a faulty query and then have it properly fi xed on Monday. Or you like to add a “force
index” to a query once the optimizer of MySQL has decided it really needs to use a
diff erent index. Another example would be rewriting a query where a hacker performed
an SQL injection and negate the attack this way. You could also shard your data over
multiple clusters and use the query rewriter to send the queries to the correct shard
cluster.

24

Severalnines provides automation and management software for database clusters. We
help companies deploy their databases in any environment, and manage all operational
aspects to achieve high-scale availability.

Severalnines’ products are used by developers and administrators of all skills levels
to provide the full ‘deploy, manage, monitor, scale’ database cycle, thus freeing them
from the complexity and learning curves that are typically associated with highly
available database clusters. The company has enabled over 8,000 deployments to date
via its popular ClusterControl solution. Currently counting BT, Orange, Cisco, CNRS,
Technicolour, AVG, Ping Identity and Paytrail as customers. Severalnines is a private
company headquartered in Stockholm, Sweden with offi ces in Singapore and Tokyo,
Japan. To see who is using Severalnines today visit, http://severalnines.com/customers.

About Severalnines

Deploy Manage Monitor Scale

25

Whitepapers

MySQL Replication for High Availability
This tutorial covers information about MySQL Replication,
with information about the latest features introduced in 5.6
and 5.7. There is also a more hands-on, practical section on
how to quickly deploy and manage a replication setup using
ClusterControl.

Download here

Management and Automation of Open
Source Databases
Proprietary databases have been around for decades with a rich
third party ecosystem of management tools. But what about
open source databases? This whitepaper discusses the various
aspects of open source database automation and management
as well as the tools available to effi ciently run them.

Download here

A Guide to Effi cient Database Infrastructure
Operations
Taking control of their data is every company’s number one job.

Database operations encompass a number of functions,
including the initial deployment of a solution, confi guration
management, performance monitoring, SLA management,
backups, patches, version upgrades and scaling.

Download here

Related Resources from
Severalnines

http://severalnines.com/whitepapers#download_whitepaper/4654
http://severalnines.com/whitepapers#download_whitepaper/4506
http://severalnines.com/whitepapers#download_whitepaper/536

26

MASTER

WRITE

© 2016 Severalnines AB. All rights reserved. Severalnines and the Severalnines logo(s) are
trademarks of Severalnines AB. Other names may be trademarks of their respective owners.

Deploy

Manage

Monitor

Scale

	Table of Contents
	1. Introduction
	2. Why a Blueprint for Replication?
	2.1. Replication in the pre-MySQL 5.6 era
	2.2. Making MySQL Replication Production Ready
	2.3. GTID - A Stronger Foundation for Replication

	3. Introducing the MySQL Replication Blueprint
	3.1. Deployment and Configuration
	3.2. Master/Slave
	3.3. Multi Master
	3.4. Parallel Replication
	3.5. Multi source Replication
	3.6. Management & Monitoring
	3.7. Load balancers

	4. Monitoring
	4.1. Availability
	4.2. Performance
	4.3. Alerting

	5. Management
	5.1. Replication topology changes
	5.2. Adding new slaves
	5.2.1. Why would you delay a slave?

	5.3. Repairing a broken replication topology
	5.3.1. Slave promotion
	5.3.2. Most advanced slave without GTID
	5.3.3. Most advanced slave with GTID
	5.3.4. Automated slave promotion

	5.4. Backups
	5.4.1. Logical or physical backups?
	5.4.2. Do you need full or incremental backups?
	5.4.3. Scheduling
	5.4.4. Testing your backups

	5.5. Updating to a newer version
	5.6. Schema changes
	5.7. Configuration changes

	6. Load Balancing
	6.1. What are the benefits of proxies?
	6.2. Read/Write splitting
	6.3. Which proxy to choose
	6.4. Query Caching
	6.5. Query rewrites

	About Severalnines
	Related Resources from Severalnines

