
1

2

3

Table of Contents
Introduction 4

What is the Aggregation Framework? 5

Aggregation Pipeline 6
Basic Stages of Aggregation Pipeline 6
 $match 6
 $group 9
 $unwind 10
 $project 12

Points to note 12
 $sort 13
 $sample 15
 $limit 15
 $lookup 16

Aggregation Process 18

Accumulator Operators 21
 $sum 21
 $avg 22
 $max and $min 23
 $push 24

Similarity of the Aggregation Process in MongoDB with SQL 25

Aggregation Pipeline Optimization 27
Projection Optimization 27
Pipeline Sequence Optimization 27

MapReduce in MongoDB 28
MapReduce JavaScript Functions 30
Incremental MapReduce 31

Comparison Between MapReduce and Aggregation Pipeline
in MongoDB 34

Summary 35

About ClusterControl 36

About Severalnines 36

Related Resources 37

4

Using the CRUD find operation while fetching data in MongoDB may sometimes
become tedious. For instance, you may want to fetch some embedded documents in a
given field but the find operation will always fetch the main document and then it will
be upon you to filter this data and select a field with all the embedded documents, scan
through it to get ones that match your criteria. Since there is no simple way to do this,
you will be forced to use something like a loop to go through all these subdocuments
until you get the matching results. However, what if you have a million embedded
documents? You will unfortunately get frustrated with how long it will take. Besides,
the process will take a lot of your server’s random memory and maybe terminate the
process before you get all the documents you wanted, as the server document size may
be surpassed.

In this paper, we will deep dive into MongoDB’s Aggregation Framework and look into
the different stages of the Aggregation Pipeline. We’ll see how we make use of these
stages in an aggregation process. We’ll then look at the operators that can assist in the
analysis process of input documents. Finally, we’ll compare the aggregation process in
MongoDB with SQL, as well as the differences between the aggregation process and
MapReduce in MongoDB.

Introduction

5

Regarding the limitations associated especially with a large number of documents, there
is the need to group them to enhance the scanning process. Aggregation framework
is therefore an operation process which manipulates documents in different stages,
processes them in accordance with the provided criteria and then return the computed
results. Values from multiple documents are grouped together, on which more
operations can be performed to return matching results.

What is the Aggregation
Framework?

6

To scan the documents one by one in order to apply some operation to them will
obviously outdo the purpose of aggregation framework because it will consequently
take much time to do this. Therefore, the data processing is done at the same time from
different stages using the UNIX pipelining technique. Documents from a collection are
channeled into a multistage pipeline from which they are converted into aggregated
data.

Contrary to the map-reduce functions in MongoDB which is Javascript code interpreted,
the aggregation pipeline runs compiled C++ code. MongoDB data is stored in BSON
format and for this reason, the map-reduce takes longer to convert this BSON data
into JSON format for processing. On the other hand, the aggregation pipeline does not
need to perform any conversion.

We can show the aggregation process using a simple flow chart as below:

Basic Stages of Aggregation Pipeline
As mentioned before, documents pass a number of defined stages in order to be
filtered to the desired result. The stages that may be involved are:

$match
Like other MongoDB operations, this uses the standard MongoDB queries to filter
documents without any modification and then passes them to the next stage. A
document has to match the provided criteria in the query for it to pass to the next
stage.

Example:

Let’s create a simple collection named users and populate it with the data below.

Aggregation Pipeline

1 {
2 “_id” : ObjectId(“5b43cbe2106c21d21c776e81”),
3 “userId” : NumberLong(“1530442083133”),
4 “name” : “George”,”eyeColor” : “blue”,
5 “connections” : [
6 {

7

7 “status” : “Disconnect”,
8 “userName” : “Valencia”,
9 “name” : “Derrick Clinton”,
10 “id” : NumberLong(“1530444522597”)
11 },
12 {
13 “status” : “Connect”,
14 “userName” : “Carliston”,
15 “name” : “James Good”,
16 “id” : NumberLong(“1530444522597”)
17 }
18]
19 }
20 {
21 “_id” : ObjectId(“5b43cbe2106c21d21c776e82”),
22 “userId” : NumberLong(“153044201111”),
23 “name” : “Monica”,
24 “eyeColor” : “normal”,
25 “connections” : [
26 {
27 “status” : “Disconnect”,
28 “userName” : “JohnDoh”,
29 “name” : “Alex Xian”,
30 “id” : NumberLong(“153044445903”)
31 },
32 {
33 “status” : “Connect”,
34 “userName” : “MaryCartie”,
35 “name” : “Mary Carey”,
36 “id” : NumberLong(“1530444522597”)
37 }
38]
39 }
40 {
41 “_id” : ObjectId(“5b43cbe2106c21d21c776e83”),
42 “userId” : NumberLong(“15304420836758”),
43 “name” : “Harrison”,
44 “eyeColor” : “blue”,
45 “connections” : [
46 {
47 “status” : “Connect”,
48 “userName” : “Kevin”,
49 “name” : “Keni Sems”,
50 “id” : NumberLong(“34435345345343”)
51 },
52 {
53 “status” : “Disconnect”,
54 “userName” : “Mayaka”,
55 “name” : “Andrew Fake”,

8

We now have 3 documents in users collection with 2 more embedded documents in
the connections field in each. Using the $match stage, let us return the document
with name equal to Harrison.

Query

Result

In this case, the document with name equal to Harrison will be passed to the next stage
since it matched the criteria.

In order to achieve the best performance of the $match stage, use it early in the
aggregation process since it will:

1. Take advantage of the indexes hence become much faster
2. Limit the number of documents that will be passed to the next stage.

However, you must not use the $where clause in this $match stage since it is catered
for within the match condition.

56 “id” : NumberLong(“15304445224357”)
57 }
58]
59 }

1 db.getCollection(‘users’).aggregate([
2 {$match: {‘name’: ‘Harrison’}}
3])

1 {
2 “_id” : ObjectId(“5b43cbe2106c21d21c776e83”),
3 “userId” : NumberLong(“15304420836758”),
4 “eyeColor” : “blue”,
5 “name” : “Harrison”,
6 “connections” : [
7 {
8 “status” : “Connect”,
9 “userName” : “Kevin”,
10 “name” : “Keni Sems”,
11 “id” : NumberLong(“34435345345343”)
12 },
13 {
14 “status” : “Disconnect”,
15 “userName” : “Mayaka”,
16 “name” : “Andrew Fake”,
17 “id” : NumberLong(“15304445224357”)
18 }
19]
20 }

9

$group
For a specified expression, data is grouped accordingly in this stage. For every distinct
group that is formed, it is passed to the next stage as a document with a unique _id
field.

The syntax for this group operation is:

The accumulator operations that may be involved include: $sum, $avg, $max, $last,
$push. For our users collection above, we will group the documents using the
eyeColor field and see how many groups we will get.

Using the _id field here we are specifying which criteria we are using to group and in
this case we use the eyeColor field. The result from this operation is:

We can go further and sum the number of people in each of this group with an
accumulator expression of sum. I.e.

The result for this query will be

The number of people with blue eyeColor is 2 and for normal color is 1. Besides, you
can fetch the names of people in this groups as an array using the push operator and
field name in the expression as:

1 { $group: {_id <expression>, <field>: {<accumulator>: <ex-
pression>}}}

1 db.getCollection(‘users’).aggregate([
2 {$group: {
3 _id:”$eyeColor”,
4 }
5 }
6])

1 { “_id” : “blue” }
2 { “_id” : “normal” }

1 { “_id” : “blue”, “numberOfPeople” : 2 }
2 { “_id” : “normal”, “numberOfPeople” : 1 }

1 db.getCollection(‘users’).aggregate([
2 {$group: {
3 _id:”$eyeColor”,
4 numberOfPeople: {$sum: 1}
5 }
6 }
7])

10

With this operation the result is

This is the goodness of the aggregation framework. Otherwise you could use a loop to
group this data and as mentioned above this will be tedious besides taking prenty of
your time.

$unwind
More often you will employ embedding of documents and would like to fetch those
documents as separate entities from the main document. The unwind stage will help us
get these documents with its simple syntax of

Using our users collection we can fetch the connections for each user using the
simple operation below and also the position of each subdocument in the array.

1 db.getCollection(‘users’).aggregate([
2 {$group: {
3 _id:”$eyeColor”,
4 names: {$push: “$name”}
5 }
6 }
7])

1 { “_id” : “blue”, “names” : [“George”, “Harrison”] }
2 { “_id” : “normal”, “names” : [“Monica”] }

1 db.getCollection(‘users’).aggregate([
2 {$unwind:
3 {
4 path: “$connections”,
5 includeArrayIndex: “arrayIndex”
6 }
7 }
8])

1 {
2 “_id” : ObjectId(“5b43cbe2106c21d21c776e81”),
3 “userId” : NumberLong(“1530442083133”),
4 “eyeColor” : “blue”,
5 “name” : “George”,
6 “connections” : {
7 “status” : “Disconnect”,
8 “userName” : “Valencia”,
9 “name” : “Derrick Clinton”,
10 “id” : NumberLong(“1530444522597”)

1 {$unwind: <field path>}

11

11 },
12 “arrayIndex” : NumberLong(0)
13 }
14 {
15 “_id” : ObjectId(“5b43cbe2106c21d21c776e81”),
16 “userId” : NumberLong(“1530442083133”),
17 “eyeColor” : “blue”,
18 “name” : “George”,
19 “connections” : {
20 “status” : “Connect”,
21 “userName” : “Carliston”,
22 “name” : “James Good”,
23 “id” : NumberLong(“1530444522597”)
24 },
25 “arrayIndex” : NumberLong(1)
26 }
27 {
28 “_id” : ObjectId(“5b43cbe2106c21d21c776e82”),
29 “userId” : NumberLong(“153044201111”),
30 “name” : “Monica”,
31 “eyeColor” : “normal”,
32 “connections” : {
33 “status” : “Disconnect”,
34 “userName” : “JohnDoh”,
35 “name” : “Alex Xian”,
36 “id” : NumberLong(“153044445903”)
37 },
38 “arrayIndex” : NumberLong(0)
39 }
40 {
41 “_id” : ObjectId(“5b43cbe2106c21d21c776e82”),
42 “userId” : NumberLong(“153044201111”),
43 “name” : “Monica”,
44 “eyeColor” : “normal”,
45 “connections” : {
46 “status” : “Connect”,
47 “userName” : “MaryCartie”,
48 “name” : “Mary Carey”,
49 “id” : NumberLong(“1530444522597”)
50 },
51 “arrayIndex” : NumberLong(1)
52 }
53 {
54 “_id” : ObjectId(“5b43cbe2106c21d21c776e83”),
55 “userId” : NumberLong(“15304420836758”),
56 “name” : “Harrison”,
57 “eyeColor” : “blue”,
58 “connections” : {
59 “status” : “Connect”,
60 “userName” : “Kevin”,

12

$project
In this stage, the documents are modified either to add or remove some fields that will
be returned. In a nutshell, this stage passes the documents with only specified fields.

The syntax for project is

Points to note
1. If a field is described with a value of 1 or true, the document that is to be

returned will have that field.
2. You can suppress the _id field so that it cannot be returned by describing it

with 0 or false value.
3. You can add a new field or reset the field by describing it with a value of some

expression.
4. The $project operation will basically treat a numeric or boolean values as

flags. For this reason, you will need to use the $literal operator for you to set
a field value numeric or boolean.

From the users collection we can fetch the username of people in the connections
documents without necessarily getting the main document information and also
suppressing the _id field using this stage.

61 “name” : “Keni Sems”,
62 “id” : NumberLong(“34435345345343”)
63 },
64 “arrayIndex” : NumberLong(0)
65 }
66 {
67 “_id” : ObjectId(“5b43cbe2106c21d21c776e83”),
68 “userId” : NumberLong(“15304420836758”),
69 “name” : “Harrison”,
70 “eyeColor” : “blue”,
71 “connections” : {
72 “status” : “Disconnect”,
73 “userName” : “Mayaka”,
74 “name” : “Andrew Fake”,
75 “id” : NumberLong(“15304445224357”)
76 },
77 “arrayIndex” : NumberLong(1)
78 }

1 {$project: {<specifications>}}

13

The resulting documents will be.

We can also add a new field of connections status and fetch the correspondent data as:

The result for this will be:

1 db.getCollection(‘users’).aggregate([
2 {$unwind:
3 {
4 path: “$connections”,
5 includeArrayIndex: “arrayIndex”
6 }
7 },
8 {$project: {“connections.userName”: 1, _id:0}}
9])

1 { “connections” : { “userName” : “Valencia” } }
2 { “connections” : { “userName” : “Carliston” } }
3 { “connections” : { “userName” : “JohnDoh” } }
4 { “connections” : { “userName” : “MaryCartie” } }
5 { “connections” : { “userName” : “Kevin” } }
6 { “connections” : { “userName” : “Mayaka” } }

1 db.getCollection(‘users’).aggregate([
2 {$unwind:
3 {
4 path: “$connections”,
5 includeArrayIndex: “arrayIndex”
6 }
7 },
8 {$project: {“connections.userName”: 1, _id:0,
9 “ConnectionStatus”: “$connections.status”}}
10])

1 {“connections”: {“userName”: “Valencia”},”ConnectionStatus”:
“Disconnect”}

2 {“connections”: {“userName” : “Carliston”},”ConnectionSta-
tus” : “Connect”}

3 {“connections”: {“userName”: “JohnDoh”},”ConnectionStatus” :
“Disconnect”}

4 {“connections”: {“userName”: “MaryCartie”},”ConnectionSta-
tus” : “Connect”}

5 {“connections” : {“userName” : “Kevin”},”ConnectionStatus” :
“Connect”}

6 {“connections”: {“userName” : “Mayaka”},”ConnectionStatus” :
“Disconnect”}

14

$sort
The sort stage arranges the returned documents in relation to some specified order in
the sort key parameter. The documents are never modified. Only the order changes.
Let’s consider this simple collection of students

This aggregation stage will return documents which are sorted using the age as the
sort key. If it is set to 1 then the arrangement is in ascending order otherwise if set to -1,
then the arrangement will be in a descending order.

The resulting documents will be:

We can also change the sort key to name and check on the alphabetical order besides
getting the results in a descending order.

1 {“_id”: ObjectId(“5b47c275106c21d21c776e84”),”name”: “Gadaf-
fy”,”age”: 20}

2 {“_id”: ObjectId(“5b47c275106c21d21c776e85”),”name” :
“John”,”age” : 18}

3 {“_id”: ObjectId(“5b47c275106c21d21c776e86”),”name”: “Da-
vid”,”age”: 30}

4 {“_id”: ObjectId(“5b47c275106c21d21c776e87”),”name”: “Emi-
ly”,”age”: 16}

5 {“_id”: ObjectId(“5b47c275106c21d21c776e88”),”name”: “Cyn-
thia”,”age”: 14}

6 {“_id”: ObjectId(“5b47c275106c21d21c776e89”),”name”:
“Mary”,”age”: 28}

1 { “name” : “Cynthia”, “age” : 14 }
2 { “name” : “Emily”, “age” : 16 }
3 { “name” : “John”, “age” : 18 }
4 { “name” : “Gadaffy”, “age” : 20 }
5 { “name” : “Mary”, “age” : 28 }
6 { “name” : “David”, “age” : 30 }

1 db.getCollection(‘students’).aggregate([
2 {$project: {‘name’:1, ‘age’:1, _id:0}},
3 {$sort: {age: 1}}
4])

1 db.getCollection(‘students’).aggregate([
2 {$project: {‘name’:1, ‘age’:1, _id:0}},
3 {$sort: {name: -1}}
4])

15

The resulting documents will be:

$sample
This stage randomly selects and returns a number of documents that have been
specified. For example from the students collection, fetch 2 random documents as

The resulting documents

If you run the operation a couple of times you will be getting different documents.

$limit
As opposed to the $sample stage that returns documents randomly, $limit returns
the first N documents and N as the specified limit. An example from the students
collection:

The resulting documents will be

1 { “name” : “Mary”, “age” : 28 }
2 { “name” : “John”, “age” : 18 }
3 { “name” : “Gadaffy”, “age” : 20 }
4 { “name” : “Emily”, “age” : 16 }
5 { “name” : “David”, “age” : 30 }
6 { “name” : “Cynthia”, “age” : 14 }

1 db.getCollection(‘students’).aggregate([
2 {$project: {‘name’:1, ‘age’:1, _id:0}},
3 {$sample: {“size”:2}}
4])

1 db.getCollection(‘students’).aggregate([
2 {$project: {‘name’:1, ‘age’:1, _id:0}},
3 {$limit: 2}
4])

1 { “name” : “Gadaffy”, “age” : 20 }
2 { “name” : “Mary”, “age” : 28 }

1 { “name” : “Gadaffy”, “age” : 20 }
2 { “name” : “John”, “age” : 18 }

16

$lookup
The $lookup stage is basically like doing a left outer join from one collection to another
but in the same database. It filters documents from the joined collection. A new array
field is added with elements that are matching documents from the joined collection.

The syntax for the $lookup stage is:

• from: this takes the value name of the collection you want to perform the join
and it has to be in the same database as the collection you are querying.

• localField: this is a field in the current collection which you want to perform
equality match on to the foreighfield.

• foreignField: is a field in the collection you are joining with that your are to
use in performing an equality match on the localField.

• as: is a new array field to add to the input documents. It contains matching
documents from the foreign collection.
As an example, we will make another collection named address as shown
below:

Let’s for example get the town for each student in the students collection from the
address collection. In this case, we will use the name field in the students collection as
the localField and the name field in the address collection as the foreignField.

1 {
2 $lookup:
3 {
4 from: <collection to join>,
5 localField: <input document field>,
6 foreignField: <field from documents of the from

collection>,
7 as: <output array field>
8 }
9 }

1 {“_id” : ObjectId(“5b485eb5106c21d21c776e8b”),”name”
: “John”,”town” : “Nairobi”}

2 {“_id” : ObjectId(“5b485eb5106c21d21c776e8c”),”name”
: “David”,”town” : “Beijing”

3 }{“_id” : ObjectId(“5b485eb5106c21d21c776e8d”),”name”
: “Emily”,”town” : “Juba”}

4 {“_id”: ObjectId(“5b485eb5106c21d21c776e8e”),”name”:”-
Cynthia”,”town”: “London”}

5 {“_id”: ObjectId(“5b485eb5106c21d21c776e8f”),”name”:
“Mary”,”town”: “California”}

1 db.getCollection(‘students’).aggregate([
2 {$lookup: {from:’address’,localField: ‘name’,foreign-

Field: ‘name’,as: ‘address’}},
3 {$project: {‘address.town’: 1,age: 1,name: 1, _id: 0}}
4])

17

The resulting documents will be

1 {“name” : “Gadaffy”,”age” : 20,”address” : [{“town” : “Geor-
gia”}]}

2 {“name” : “John”,”age” : 18,”address” : [{“town” : “Nairo-
bi”}]}

3 {“name” : “David”,”age” : 30,”address” : [{“town” : “Bei-
jing”}]}

4 {“name” : “Emily”,”age” : 16,”address” : [{“town” :
“Juba”}]}

5 {“name” : “Cynthia”,”age” : 14,”address” : [{“town” : “Lon-
don”}]}

6 {“name” : “Mary”,”age” : 28,”address” : [{“town” : “Califor-
nia”}]}

18

As we have discussed all these stages, we need to understand how to associate them
in our querying process so that we get the desired results. The process starts with
inputting documents from the selected collection into the first stages. These documents
can pass through 1 or more stages with each stage involving different operations. A
simple diagram of the pipeline process is shown below.

Aggregation Process

19

The output of each stage becomes the input of the next stage and any stage can be
repeated in order to filter the documents further.

As an example, we are going to use the students collection to fetch only the name and
age of each student whose age is greater than 20 and then sort the results using the
age field as our key value.

This is our data:

We are going to use the $match stage to filter out documents whose age value is less
than 20, then using $sort stage, arrange the documents in relation to the age and
finally return the name and age of each student only using the $project stage.

The resulting documents will be:

Basically, we can show the result of each stage in the output in the diagram on next
page.

1 db.getCollection(‘students’).aggregate([
2 {$match: {age: {$gt:20}}},
3 {$project: {_id: 0, name:1, age:1} },
4 {$sort: {age: 1}}
5])

1 { “name” : “Mary”, “age” : 28 }
2 { “name” : “David”, “age” : 30 }

20

21

These are operators which assist in the analysis process of the input documents. All of
them are found in the $group stage but as from version 3.2, some are also found in the
$project stage.

We are going to use this data to elaborate on the usage of these operators (add it to a
collection and name it students)

The accumulator operators include;

$sum
This operator returns the sum of numeric value while ignoring non numeric values. It is
found both in $group and $project stages as from version 3.2

In the $group stage, it will return the collective sum of all numeric values in accordance
to some applied expression to each document in a group who share the same key
name. The syntax for the $sum operator is

However, for the $project stage we can add the number of expressions and make an
array thereby the syntax becomes:

Accumulator Operators

1 {“_id” : ObjectId(“5b485eb5106c21d21c776e8a”),”name” :
“Gadaffy”,”town” : “Georgia”,”unit” : “A”,”age” : 18,”marks”
: [20, 50, 38] }

2 {“_id” : ObjectId(“5b485eb5106c21d21c776e8b”),”name” :
“John”,”town” : “Nairobi”,”unit” : “B”,”age” : 24,”marks” :
[38, 60, 70]}

3 {“_id” : ObjectId(“5b485eb5106c21d21c776e8c”),”name” : “Da-
vid”,”town” : “Beijing”,”unit” : “A”,”age” : 28}

4 {“_id” : ObjectId(“5b485eb5106c21d21c776e8d”),”name” : “Emi-
ly”,”town” : “Juba”,”unit” : “C”,”age” : 30, “marks” : [40,
87, 34]}

5 {“_id” : ObjectId(“5b485eb5106c21d21c776e8e”),”name” : “Cyn-
thia”,”town” : “London”,”unit” : “B”,”age” : 16, “marks” :
[60, 90, 98]}

6 {“_id” : ObjectId(“5b485eb5106c21d21c776e8f”),”name” :
“Mary””town” : ,”California”,”unit” : “B”,”age” : 22,
“marks” : [52, 50, 56]}

1 {$sum: <expression> }

1 {$sum: [<expression1>, <expression2> ...]}

22

Using the data above, let’s group the students in relation to their unit and sum the
number students in each group.

And the result for this is:

If the field specified in the expression does not exist, then the operation will return a
value of 0.

We can also sum the marks of each student using the $project stage. Remember, in this
case we have used only 1 field that is the marks field, you can add many field as your
data involves.

The operation will give the following result:

$avg
Give the average value of numeric values while ignoring non-numeric values. From
version 3.2, this operator is available in both $group and $project stages.

In the $group stage, it will return the collective average of all numeric values in
accordance to some applied expression to each document in a group who share the
same key name. The syntax for the $avg operator is

However, for the $project stage we can add the number of expressions and make an
array thereby the syntax becomes:

1 db.getCollection(students).aggregate([{$group: {“_id”:
“$unit”,sum: {$sum: 1}}}])

1 db.getCollection(‘students’).aggregate([{$project: {Total-
Marks: {$sum: [“$marks”]}}}])

1 { “_id” : “A”, “NumberOfStudents” : 2 }
2 { “_id” : “B”, “NumberOfStudents” : 3 }
3 { “_id” : “C”, “NumberOfStudents” : 1 }

1 { “_id” : ObjectId(“5b485eb5106c21d21c776e8b”), “Total-
Marks” : 168 }

2 { “_id” : ObjectId(“5b485eb5106c21d21c776e8c”), “Total-
Marks” : 182 }

3 { “_id” : ObjectId(“5b485eb5106c21d21c776e8d”), “Total-
Marks” : 161 }

4 { “_id” : ObjectId(“5b485eb5106c21d21c776e8e”), “Total-
Marks” : 848 }

5 { “_id” : ObjectId(“5b485eb5106c21d21c776e8f”), “Total-
Marks” : 158 }

1 {$avg: <expression> }

23

In the group stage, we can get the average age of every group as:

And the result will be:

In the project stage, we can get the average marks of each student as:

The result for this operation will be:

$max and $min
Return the maximum and minimum values respectively from a given numeric array.
Returns a 0 for field that does not exist. In the group stage we can check for the
maximum and minimum ages for each group formed as:

The result from the operation is:

1 {$avg: [<expression1>, <expression2> ...]}

1 db.getCollection(‘students’).aggregate([{$group: {“_id”:
“$unit”, AverageAge: {$avg: “$age”}}}])

1 db.getCollection(‘students’).aggregate([{$project: {“_id”:
0,”name”: 1, AverageMarks: {$avg: [“$marks”]}}}])

1 db.getCollection(‘students’).aggregate([{$group: {“_id”:
‘$unit’,”Maximum age”: {$max: “$age”},”Minimum age”: {$min:
“$age”}}}])

1 { “_id” : “A”, “AverageAge” : 23 }
2 { “_id” : “B”, “AverageAge” : 20.666666666666668 }
3 { “_id” : “C”, “AverageAge” : 30 }

1 { “_id” : “A”, “Maximum age” : 28, “Minimum age” : 18 }
2 { “_id” : “B”, “Maximum age” : 24, “Minimum age” : 16 }
3 { “_id” : “C”, “Maximum age” : 30, “Minimum age” : 30 }

1 { “name” : “Gadaffy”, “AverageMarks” : 36 }
2 { “name” : “John”, “AverageMarks” : 56 }
3 { “name” : “David”, “AverageMarks” : 60.666666666666664 }
4 { “name” : “Emily”, “AverageMarks” : 53.666666666666664 }
5 { “name” : “Cynthia”, “AverageMarks” : 82.6666666666667 }
6 { “name” : “Mary”, “AverageMarks” : 52.666666666666664 }

24

In the project stage, we can find the maximum marks and minimum marks of each
student as:

The result for this operation is:

$push
This is available only in the $group stage. It is used to return an array of the expression
values. For our example above, after grouping the students according to their unit,
what if we want to get the names of students in each group? We will have to push their
names into an array using the $push operator as:

The result from this operation will be

1 db.getCollection(‘students’).aggregate([{$project: {“_id”:
0,”name”: 1,”Maximum marks”: {$max: “$marks”},”Minimum
marks”: {$min: “$marks”}}}])

1 db.getCollection(‘students’).aggregate([{$group: {“_id”:
‘$unit’,”students”: {$push: “$name”}}}])

1 { “_id” : “A”, “students” : [“Gadaffy”, “David”] }
2 { “_id” : “B”, “students” : [“John”, “Cynthia”, “Mary”] }
3 { “_id” : “C”, “students” : [“Emily”] }

1 { “name” : “Gadaffy”, “Maximum marks” : 50, “Minimum marks” :
20 }

2 { “name” : “John”, “Maximum marks” : 70, “Minimum marks” :
38 }

3 { “name” : “David”, “Maximum marks” : 76, “Minimum marks” :
40 }

4 { “name” : “Emily”, “Maximum marks” : 87, “Minimum marks” :
34 }

5 { “name” : “Cynthia”, “Maximum marks” : 98, “Minimum marks”
: 60 }

6 { “name” : “Mary”, “Maximum marks” : 56, “Minimum marks” :
50 }

25

With the introduction of the aggregation process in MongoDB, there is a greater
capability of doing most of the data processing just like in SQL. We can contrast the
operations hand in hand from MongoDB to SQL as depicted below.

We will use our student collection above as a table in SQL and as a collection in
MongoDB.

SQL MongoDB
SELECT $project
WHERE/HAVING $match
JOIN $lookup
LIMIT $limit
GROUP BY $group
ORDER BY $sort
COUNT() $sum/ $sortByCount
SUM() $sum
AVG() $avg

SQL MongoDB Explanation

SELECT town, age,unit
FROM `students` WHERE
name = ‘Mary’ LIMIT 1

db.students.aggregate([
 {
 $match: {name: ‘Mary’}
 },
 {
 $project: {
 “town”: 1,
 “age”: 1,
 “Unit”: 1
 }
 },
 {
 $limit: 1
 }
])

Fetches the ages, towns
and units of the students
whose names correspond
to Mary and return only 1
result.

Similarity of the Aggregation
Process in MongoDB with SQL

Table: Operators in MongoDB that offer equivalent SQL functions

26

SQL MongoDB Explanation

SELECT * FROM `students`
WHERE unit = ‘B’ ORDER
BY name ASC

db.students.aggregate([
 {
 $match: {unit: ‘B’}
 }{
 $sort: {name: 1}
 }
])

Fetches all students who
belong to unit B and
arranges the results in
accordance to their names
in an ascending order.

SELECT * FROM `students`
GROUP BY unit COUNT(*)
as numberOfStudents

db.students.aggregate([
 {
 $group: {
 _id: ‘unit’,
 numberOfStudents:
 {“$sum”: 1}
 }
 }])

Groups the students
that share the same unit
value and then counts
the number of students in
each group formed.

SELECT AVG(age) AS
averageAge FROM
`students`

db.students.aggregate([
 {$group: {
 _id: null, averageAge :
 {“$avg”: “$age”}}}])

Calculates the average age
of the students.

SELECT * FROM `students`
HAVING age > 20

db.students.aggregate([
 {$match: {‘age’:{$gt: 20}}}])

Return all students whose
age is greater than 20.

Table: Examples of similarity in MongoDB and SQL

27

As much as the aggregation concept improves performance more than the CRUD find
operation, there are further techniques you can involve to improve the performance.
This is achieved through a reshaping of the pipeline. The query optimizer in MongoDB
is most effective at picking the best of multiple plans but with the aggregation
framework, it is always under your complete control and design how the steps should
be executed.

Projection Optimization
In this case you select the only fields you want to be returned. For example if you want
embedded documents in a field, then there will be no need to return other fields in the
main document as this will reduce data amount passing through the pipeline hence
save of time. The $project stage is used in this case

Pipeline Sequence Optimization
1. $sort + $skip + $limit Sequence Optimization

If you have a sequence of sort followed by a skip and then a limit, an
optimization phase will occur to bring the limit stage before the skip stage.
For example

2. $limit + $skip + $limit + $skip Sequence Optimization
For a continuous sequence of skip and limit, the optimization phase will
attempt to group the limit stages together and then the skip stages together.

Aggregation Pipeline
Optimization

28

This is also an aggregation process which condenses large volumes of data into an
aggregated form.

Before doing a map-reduce on your collection, you need to
1. Understand your data structure and how are you going to analyze it.
2. Design your end result by having a structure how it should look like.
3. Manipulate a sample of the data to know which equations and modifications

that need to be integrated.

The MapReduce structure can be summarized with the diagram below

MapReduce in MongoDB

29

Majorly, there are 2 stages involved, that is, the mapping process and then reducing the
mapped results.

For every input document, arbitrary sorting and limiting is done and then the map
phase is applied with an end result of producing key-value pairs.

If there are keys with multiple values, they are passed to the reduce phase to condense
the aggregated data. A query is also used to limit the number of documents entering
into the map phase.

The final result is stored in a new collection whose name is specified in the out property
of the map-reduce operation.

In MongoDB, we use the mapReduce function to achieve this operation. The syntax for
MapReduce operation in MongoDB is:

For example, for our students collection we can calculate the average age of each
group using this simple map reduce function:

This operation will result in a new collection named results with the average age
value for each group i.e.

1 db.collection.mapReduce({
2 /*map*/ function() { emit (fields to be returned);},
3 /*reduce and sum some field value*/ function(key,

values){ return Array.sum(values) },
4 /*query*/ {
5 query: { field: value},
6 out: newField
7 },
8 /*collection to store data*/
9 out: “collection name”
10 })

1 db.getCollection(‘students’).mapReduce(
2 function(){emit(this.unit, this.age)},
3 function(key, values){return Array.avg(values)},
4 {
5 query: {},
6 out: ‘results’
7 }
8)

1 { “_id” : “A”, “value” : 23 }
2 { “_id” : “B”, “value” : 20.666666666666668 }
3 { “_id” : “C”, “value” : 30 }

30

We can also supply some expression to the query attribute like getting the group A and
B only

The result for this operation will result in a collection with this data:

In simple representation, this is how the process takes place

MapReduce JavaScript Functions
In order to associate or map values to a key, the map-reduce function uses the custom
JavaScript functions. The reduce operation will then identify keys with multiple values
and reduce them to single objects.

An advantage with this JavaScript operation is flexibility which can allow further
modifications and calculations. For instance, in the reduce part of our operation above,
we are able to calculate the average age in each group because the data is more
flexible.

1 db.getCollection(‘students’).mapReduce(
2 function(){emit(this.unit, this.age)},
3 function(key, values){return Array.avg(values)},
4 {
5 query: {unit: {$ne: ‘C’}},
6 out: ‘results’
7 }
8)

1 { “_id” : “A”, “value” : 23 }
2 { “_id” : “B”, “value” : 20.666666666666668 }

31

Incremental MapReduce
As mentioned above, the map-reduce operation returns data which is stored in a new
collection, this is not always the case. Sometimes the data is returned inline for you
to carry out more aggregation operations. Sometimes the map-reduce data set may
constantly be growing resulting into some final return issues. The result documents
are always expected to be within the limit size defined by the BSON Document Size
of 16 megabytes. Because of this reason, it is advisable to carry out an incremental
MapReduce function for a large set of data rather than a single map-reduce operation
on the entire data set.

The query parameter will help you to specify the conditions for which new documents
will be passed while the out parameter will specify the reduce action with which new
results will be merged into the existing output collection.

Let’s consider data in a sessions collection as shown below.

To run the initial MapReduce on the current collection, we define some functions we are
going to use in our MapReduce function.

I.e.
1. A map function which will ideally map the userid to an object which contains

the fields userid, total_time, count and avg_time.

1 {_id: ObjectId(“5b4b36a726d09bd6a0953731”),userid: “a”,ts:
ISODate(“2011-11-03T14:17:00Z”),length: 131}

2 {_id: ObjectId(“5b4b36a726d09bd6a0953732”),userid: “b”,ts:
ISODate(“2011-11-03T14:23:00Z”),length: 128}

3 {_id: ObjectId(“5b4b36a726d09bd6a0953733”),userid: “c”,ts:
ISODate(“2011-11-03T15:02:00Z”),length: 138}

4 {_id: ObjectId(“5b4b36a726d09bd6a0953734”),userid: “d”,ts:
ISODate(“2011-11-03T16:45:00Z”),length: 63}

5
6 {_id: ObjectId(“5b4b36a726d09bd6a0953735”),userid: “a”,ts:

ISODate(“2011-11-04T11:05:00Z”),length: 123}
7 {_id: ObjectId(“5b4b36a726d09bd6a0953736”),userid: “b”,ts:

ISODate(“2011-11-04T13:14:00Z”),length: 138}
8 {_id: ObjectId(“5b4b36a726d09bd6a0953737”),userid: “c”,ts:

ISODate(“2011-11-04T17:00:00Z”),length: 148}
9 {_id: ObjectId(“5b4b36a726d09bd6a0953738”),userid: “d”,ts:

ISODate(“2011-11-04T15:37:00Z”),length: 83}

1 var mapping = function(){
2 emit(this.userid, {
3 userid: this.userid,
4 total_time: this.length,
5 count: 1
6 avg_time: 0
7 });
8 }

32

2. Since we have defined we have the total time and count, we need to define a
reduce function that will do this calculation.

3. Regarding the avg_time, we need to define a finalize function with 2
arguments that is the key and reduceValue to add the average and return a
modified document.

4. We then use these functions to do an incremental map-reduce on our data set
in the sessions collection as:

If you add new documents to the sessions collection, you will need to modify the
query to determine which documents will be passed. For example if we had the last
document for a given day as

1 var reducing = function(key, values){
2 var objectReturn = {
3 userid: key,
4 total_time: 0,
5 count: 0,
6 avg_time: 0
7 };
8 values.map(function(value){
9 objectReturn.total_time += value.total_time;
10 objectReturn.count += value.count;
11 });
12 return objectReturn;
13 }

1 var finalizing = function(key, reduceValue){
2
3 if(reduceValue.count > 0){
4 reduceValue.avg_time = reduceValue.total_time /

reduceValue.count
5 }
6 return reduceValue;
7
8 }

1 db.sessions.mapReduce(mapping, reducing,
2 {
3 out: ‘sessionsInfo’,
4 finalize: finalizing
5 }
6)

1 {_id: ObjectId(“5b4b36a726d09bd6a0953738”),userid: “d”,ts:
ISODate(“2011-11-04T15:37:00Z”),length: 83}

33

For the new documents we can restrict them to have a timestamp greater than for this
last document in order to be passed to the next step. .i.e.

1 db.sessions.mapReduce(mapping, reducing,
2 {
3 query: {ts: {$gt: ISODate(“2011-11-04T15:37:00Z”)}}
4 out: {reduce: ‘sessionsInfo’},
5 finalize: finalizing
6 }
7)

34

As much as the MapReduce operation try to provide almost equivalent operations as
in the aggregation pipeline, there are some distinctive features that can lead a user to
prefer one to the other. We will discuss this in the below table.

MapReduce Aggregation Pipeline
Relatively slower process.

The fact that the MapReduce function
is based on a JavaScript interpreter, the
data in MongoDB is in a BSON format
hence has to be converted into a JSON
format before application of the Map-
Reduce operation. It tends to take more
time for a correlated function as the
aggregation pipeline.

The process is quite faster.

Pipeline concept is based on the process
of parallel operations. It implies that
several operations are carried out almost
at the same time. Also, the data is not
converted into any other format. For this
reason, the results are generated at a
faster rate

More flexibility on aggregated data.

If one would wish to pick the results at
some point, there are several options
like: inline, merge, reduce and a new
collection.

Limited data flexibility.

The results are only available in the
inline-block. To get them into another
collection you will therefore be required
to write more CRUD queries.

Incremental Aggregation.

Due to the restricted document size of
16 megabytes, incremental aggregation
provides an opportunity for one to
compute for more results by inputting
new documents that match a supplied
query and update the initial results using
the reduce operation.

Incremental aggregation is not
supported and since the documents are
returned inline, the size of the document
is always restricted to 16MB. Besides,
there is only 1 supported output option
therefore impossible to update values
if incremental aggregation was to be
applied.

Customizability.

Data that is available within the functions
can be manipulated to suit own
specifications.

Limited to operators and expressions
supported by the aggregation framework
and therefore it is impossible for one to
write custom functions.

Supports non-sharded and sharded input
collections.

Support non-sharded and sharded input
collections.

Comparison Between
MapReduce and Aggregation
Pipeline in MongoDB

35

Aggregation is the process of manipulating large data sets with some specified
procedures to return calculated results. These results are provided in a simplified format
to enhance analysis of the associated data.

The aggregation process can be done by either MapReduce operation or the
aggregation pipeline concept in MongoDB. This process is run on the mongod instance
to simplify the application code, beside the need to limit resource requirements.

The input to an aggregation process is the documents in collections and the results is
also a document or a number of documents.

Aggregation stages involve operators such as addition, averaging values for given
fields, finding the maximum and minimum values among many more operators. This
makes the analysis of data even more simplified.

Summary

36

ClusterControl is the all-inclusive open source database management system for
users with mixed environments that removes the need for multiple management
tools. ClusterControl provides advanced deployment, management, monitoring, and
scaling functionality to get your MySQL, MongoDB, and PostgreSQL databases up-
and- running using proven methodologies that you can depend on to work. At the core
of ClusterControl is it’s automation functionality that let’s you automate many of the
database tasks you have to perform regularly like deploying new databases, adding and
scaling new nodes, running backups and upgrades, and more. Severalnines provides
automation and management software for database clusters. We help companies
deploy their databases in any environment, and manage all operational aspects to
achieve high-scale availability.

Severalnines provides automation and management software for database clusters. We
help companies deploy their databases in any environment, and manage all operational
aspects to achieve high-scale availability.

Severalnines’ products are used by developers and administrators of all skills levels to
provide the full ‘deploy, manage, monitor, scale’ database cycle, thus freeing them from
the complexity and learning curves that are typically associated with highly available
database clusters. Severalnines is often called the “anti-startup” as it is entirely self-
funded by its founders. The company has enabled over 12,000 deployments to date
via its popular product ClusterControl. Currently counting BT, Orange, Cisco, CNRS,
Technicolor, AVG, Ping Identity and Paytrail as customers. Severalnines is a private
company headquartered in Stockholm, Sweden with o ces in Singapore, Japan and the
United States. To see who is using Severalnines today visit:

https://www.severalnines.com/company

About Severalnines

About ClusterControl

https://www.severalnines.com/company

37

MongoDB Management and Automation with
ClusterControl
This white paper reviews the challenges involved in managing
MongoDB at scale and introduces mitigating features of
ClusterControl from Severalnines. As a best of breed database
management solution, ClusterControl brings consistency and
reliability to your database environment, and simplifies your
database operations at scale.

Download whitepaper

Become a MongoDB DBA: Bringing MongoDB
to Production
Learn from our MongoDB experts what it takes to ensure your
MongoDB stacks are production-ready. This whitepaper includes
tips and tricks that we have collected from our best resources to
help you deploy, monitor, manage and scale MongoDB in your
environment.

Download whitepaper

Become a MongoDB DBA Blog Series
Read our popular blog series on how to become a MongoDB
DBA: we cover everything from deployment and monitoring
via management through to scaling your MongoDB database
setups.

Read the blog

Related Resources

Become a MongoDB DBA:
Bringing MongoDB

to production

https://severalnines.com/resources/whitepapers/mongodb-management-and-automation-clustercontrol
https://severalnines.com/resources/whitepapers/become-mongodb-dba-bringing-mongodb-production
https://severalnines.com/blog?series=689

38

	Introduction
	What is the Aggregation Framework?
	Aggregation Pipeline
	Basic Stages of Aggregation Pipeline
	$match
	$group
	$unwind
	$project
	Points to note

	$sort
	$sample
	$limit
	$lookup

	Aggregation Process
	Accumulator Operators
	$sum
	$avg
	$max and $min
	$push

	Similarity of the Aggregation Process in MongoDB with SQL
	Aggregation Pipeline Optimization
	Projection Optimization
	Pipeline Sequence Optimization

	MapReduce in MongoDB
	MapReduce JavaScript Functions
	Incremental MapReduce

	Comparison Between MapReduce and Aggregation Pipeline in MongoDB
	Summary
	About ClusterControl
	About Severalnines
	Related Resources

