
1

Migrating to MySQL 5.7
The Database Upgrade Guide

2

3

Table of Contents
1. Introduction 4

2. Changes between MySQL 5.6 and MySQL 5.7 5
 2.1. Information schema changes 5
 2.2. Systemd introduction to RPM-based distros 6
 2.3. SQL modes 6
 2.4. Authentication changes 6
 2.5. Changes in InnoDB 7
 2.6. Other changes introduced in MySQL 5.7 8

3. Overview of test environment 9

4. Pre-upgrade testing 10
 4.1. First step - build a test environment 10
 4.2. Collect data for regression tests 16
 4.3. Regression tests using pt-upgrade 17
 4.4. Regression tests of application 20
 4.5. Bring back the node into replication 21

5. Upgrade 24
 5.1. Slave upgrade process 24
 5.2. Switchover process and upgrade of the old master 25

6. Graceful upgrade process using ProxySQL 27
 6.1. Installation of ProxySQL 27
 6.2. Configuring ProxySQL for graceful switchover
 with the ClusterControl 27

7. About Severalnines 35

8. Related resources from Severalnines 36

4

MySQL 5.7 has been GA since October 2015. At the time of writing, it is still a very new
release. But more and more companies are looking into upgrading, as it has a list of
great new features. Schema changes can be performed with less downtime, with more
online configuration options. Multi-source and parallel replication improvements make
replication more flexible and scalable. Native support for JSON data type allows for
storage, search and manipulation of schema-less data.

An upgrade, however, is a complex process - no matter which major MySQL version you
are upgrading to. There are a few things you need to keep in mind when planning this,
such as important changes between versions 5.6 and 5.7 as well as detailed testing that
needs to precede any upgrade process. This is especially important if you would like to
maintain availability for the duration of the upgrade.

Upgrading to a new major version involves risk, and it is important to plan the whole
process carefully. In this document, we’ll look at the important new changes in 5.7 and
show you how to plan the test process. Then, we’ll look at how to do a live system
upgrade without downtime. For those who want to avoid connection failures during
slave restarts and switchover, we’ll go even further and show you how to leverage
ProxySQL to achieve a graceful upgrade process.

Introduction

5

To upgrade to 5.7, you would need to be on 5.6. The officially supported upgrade
process disallows upgrading from a version that is older than 5.6. So if you are on
MySQL 5.5, you would first upgrade to 5.6 and then to 5.7. In MySQL 5.6 and earlier
versions, dump/reload was the recommended way of performing an upgrade. But
starting from MySQL 5.7, binary in-place upgrade is supported on the same level as
logical dump/reload. This change has huge impact on how the upgrade is performed.
Instead of dumping the data, which takes a lot of time, we can just upgrade RPMs or
DEB binary packages.

No matter which way the upgrade is performed, we first need to go over any possible
incompatibilities between 5.6 and 5.7. This is an important step that you should never
skip.

2.1. Information schema changes
One of the incompabilities between MySQL 5.6 and 5.7 is the fact that some of the
views which were stored in the information_schema are not supported in MySQL 5.7.
Examples include global_status, session_status, global_variables and session_variables.
When running a query against them, you’ll end up with the following error:

You can restore original behavior by setting show_compatibility_56 to ‘1’ but it’s time to
change the queries and use the performance_schema instead:

This issue can hit monitoring and trending systems which may use those queries to
collect MySQL metrics.

Changes between MySQL 5.6
and MySQL 5.7

1 mysql> select * from information_schema.global_variables;
2 ERROR 3167 (HY000): The ‘INFORMATION_SCHEMA.GLOBAL_VARI-

ABLES’ feature is disabled; see the documentation for ‘show_
compatibility_56’

1 mysql> select count(*) from performance_schema.global_vari-
ables;

2 +----------+
3 | count(*) |
4 +----------+
5 | 496 |
6 +----------+
7 1 row in set (0.00 sec)

6

2.2. Systemd introduction to RPM-based distros
MySQL 5.7 uses systemd init processes for startup and shutdown. This may cause some
troubles in how you pass variables to MySQL via the command line. We do not want
to go into details here, but we’d like to share one of the not-that-well-documented
gotchas. By default, on Centos 7, MySQL is executed using this line:

In general, if you want to override any of the settings located (by default) in /usr/lib/
systemd/system/mysqld.service you need to create following file:

/etc/systemd/system/mysqld.service.d/override.conf

and pass any overrides there. Exception is the ExecStart directive. It cannot be
overridden by adding it to the override.conf file - you’ll end up with an error saying you
can’t have two ExecStart directives. It is possible to do that, but you need to first set it
to an empty value and then set it again to the desired setting. Below is an override.conf
which changes location for the MySQL pid file. Note that we override two directives
here: PIDFile and ExecStart. With PIDFile, it is enough to just add a directive and set it to
whatever you want. With ExecStart, we had to put it there twice.

2.3. SQL modes
With MySQL 5.7, STRICT_TRANS_TABLES mode is used by default. This makes MySQL
behavior much less forgiving when it comes to handling invalid data like zeroed date or
skipping column in INSERT when column doesn’t have an explicit DEFAULT value. This
change can significantly impact applications which do not stick to ‘good practices’. You
can learn more about this setting in the MySQL documentation.

What is also important to keep in mind is that SQL modes can be changed. Therefore
it is possible that you create a table with, let’s say, DEFAULT 0 for a DATETIME column,
change the SQL mode to more strict and then see how INSERTs fail to execute against
this table. In fact, sql_mode can be set dynamically on session level, so such behavior is
not only related to databases upgraded from older MySQL versions.

Changing from non-GTID to GTID requires reconfiguration of all the nodes in your
topology. You can prepare all your replica nodes to enable GTID, however as the master
node is the one that generates the transactions, the master should be reconfigured
before the GTID becomes effective. This means you will certainly have downtime for all
nodes.

2.4. Authentication changes
A significant number of changes were introduced around how MySQL stores
authentication data, and how it implements authentication. Some of them were made
in the mysql.user table. For example, the ‘password’ column has been removed and all

1 ExecStart=/usr/sbin/mysqld --daemonize --pid-file=/var/run/
mysqld/mysqld.pid $MYSQLD_OPTS

1 [Service]
2 PIDFile=/var/lib/mysql/mysql.pid
3 ExecStart=
4 ExecStart=/usr/sbin/mysqld --daemonize --pid-file=/var/lib/

mysql/mysql.pid $MYSQLD_OPTS

https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html#sql-mode-strict

7

authentication data along with passwords, have been moved to the ‘authentication_
string’ column. Another change is that in MySQL 5.7, the ‘plugin’ column has to be non-
empty, otherwise the account will be disabled.

When upgrading from earlier versions, mysql_upgrade should be able to fix those
problems. It examines all tables in all databases for incompatibilities with the current
version of MySQL Server, you should not forget to execute it.

The pre-4.1 password format has (finally) been removed from MySQL, along with related
configuration variables (old_passwords, secure_auth). Function OLD_PASSWORD()
has also been removed. This is a step in a good direction, removing those unsecure
passwords.

Last, but not least, in 5.7 MySQL introduced password expiration. This is a great way
to achieve a better level of security - you can force periodic password change on
users. Unfortunately, this can also have some undesired side effects after an upgrade.
Password expiration data is stored in the mysql.user table, in ‘password_lifetime’
column. When you perform an upgrade, this column is set to ‘NULL’ , which means
there’s no per-user setting in use. The thing is, MySQL introduced global setting:
default_password_lifetime. By default it is set to ‘360’, which means that all accounts
on your newly upgraded MySQL 5.7 will expire after 360 days. This introduces a time-
delayed bomb - in a year, your application won’t be able to query your database. As a
result you’ll see errors like:

To avoid this problem, you have to ensure that you’ve altered every user with the
desired password expiration settings. You can, for example, set it to x days:

or disable the password expiration for a particular host:

Of course, you can also change the global setting (SET GLOBAL default_password_
lifetime=0) but this is not the best option to choose - ideally you want your passwords
to be rotated every now and then, maybe just not for all of the users.

This behavior has changed in MySQL 5.7.11 - in that version ‘default_password_lifetime’
defaults to 0 which helps in solving the problem we’ve just described. Still, it has been
said this variable’s default setting may change in the future. So we are going to propose
sticking to the process we described as the best way to solve password expiration issue
once and for all.

2.5. Changes in InnoDB
A couple of changes introduced in MySQL 5.7 affected InnoDB. In short, both redo log
and undo log formats changed a little bit between MySQL 5.6 and MySQL 5.7. Some
of the changes also affect earlier MySQL 5.7 versions. We are not going to discuss
those changes in detail, what’s enough to say is that you want to use innodb_fast_

1 mysql> select 1;
2 ERROR 1820 (HY000): You must reset your password using ALTER

USER statement before executing this statement.

1 ALTER USER backupuser@localhost PASSWORD EXPIRE INTERVAL 10
DAY;

1 ALTER USER backupuser@localhost PASSWORD EXPIRE NEVER;

http://mysqlserverteam.com/an-update-on-default_password_lifetime/
http://mysqlserverteam.com/an-update-on-default_password_lifetime/

8

shutdown=0 when stopping the previous MySQL version to ensure all data has been
flushed correctly before you attempt the upgrade.

With MySQL 5.7, the default row format has changed to DYNAMIC. If you want to retain
the previous (COMPACT) format as default one, you need to make changes in MySQL
configuration (innodb_default_row_format).

2.6. Other changes introduced in MySQL 5.7
One of the remaining changes is the removal of YEAR(2) format - you have to convert
such columns to YEAR(4) data type, and mysql_upgrade can handle this conversion for
you.

If you make use of user-defined locks in your application, you want to modify it to play
by the new rules introduced in MySQL 5.7. The most important change is that GET_
LOCK() doesn’t implicitly release the currently held lock. In the past, you could only hold
one lock at a time - MySQL 5.7 allows to grab multiple locks.

Along with the implementation of derived_merge optimization, you might see some
SQL incompatibility. In some cases of UPDATE or DELETE where you use the same table
for both DML and the derived subquery, you may get an error as the derived query is
merged in the outer query. You’ll end up updating a table based on the select executed
on the same table. In the past, the derived subquery was materialized which, de facto,
made it a separate table from the one you’ve been updating. To restore this behavior,
you can disable this optimization (i.e. on a session level) by running:

You can find more details about this issue in the MySQL documentation:
https://dev.mysql.com/doc/refman/5.7/en/subquery-optimization.html#derived-table-
optimization

Last but not least, as usual with new MySQL releases, the list of reserved keywords has
changed. You’ll want to confirm it’s not affecting your queries and table structure. More
details in the MySQL documentation:
https://dev.mysql.com/doc/refman/5.7/en/keywords.html

As you can see, the changes affect a lot of areas and some databases may be
significantly impacted - up to the point where it’s not possible to operate on MySQL 5.7
without going through a process of finding workarounds for the parts in the application
that are affected by the new MySQL behavior. That’s why it is so important to perform
detailed tests of your application before you proceed with the upgrade process. This
is out of scope of this document, as each application is different and there’s no way to
give good generic suggestions on how to check your app.

1 SET optimizer_switch = ‘derived_merge=off’;

https://dev.mysql.com/doc/refman/5.7/en/subquery-optimization.html#derived-table-optimization
https://dev.mysql.com/doc/refman/5.7/en/subquery-optimization.html#derived-table-optimization
https://dev.mysql.com/doc/refman/5.7/en/keywords.html

9

In the previous chapter, we started our upgrade process by going through the
incompatible changes which were introduced in MySQL 5.7. From now on, we’ll do
some more hands-on work. We’ll set up a testing environment for MySQL 5.7 and do
some preliminary testing.

Let’s start with a short tour of our fairly typical MySQL replication setup. It consist of
four hosts at the moment:

172.30.4.15 - ClusterControl node, colocated with our proxy, MaxScale and our
“application” (sysbench)
172.30.4.36 - Percona Server 5.6 - master
172.30.4.169 - Percona Server 5.6 - slave
172.30.4.171 - Percona Server 5.6 - slave

The whole setup was deployed using ClusterControl. As proxy, we use MaxScale and its
RW connector - this is because our “application” does not support read-write split and
MaxScale can handle it for us.

We use the following sysbench command to generate traffic. It’s connected to the
MaxScale proxy on the RW router (172.30.4.15:4008).

1 while true ; do sysbench --test=/root/sysbench/sysbench/
tests/db/oltp.lua --num-threads=6 --max-requests=0 --max-
time=0 --mysql-host=172.30.4.15 --mysql-user=sbtest
--mysql-password=sbtest --mysql-port=4008 --oltp-tables-
count=32 --report-interval=10 --oltp-skip-trx=on --oltp-ta-
ble-size=1000000 run ; done

Overview of test environment

10

4.1. First step - build a test environment

In order to perform tests, we need an upgraded database instance. Ideally, our
test database contains actual production data. If you just use a subset of data from
production, or if your data in test differs from the data in production, you may end up
with results which may not be comparable to production.

Our approach will be as follows:

1. We are going to set up a new slave, running on MySQL 5.6. If you can afford to
remove one of your slaves from rotation, you can reuse it.

2. Once the slave is up and running, we’ll stop the slave thread to maintain a
consistent state of the database.

3. We will then set up another host with a MySQL 5.6 instance, using the data
from the stopped slave

4. Once the second host is up, we’ll upgrade it to MySQL 5.7

We should have two database instances by now, one running MySQL 5.6, one
running MySQL 5.7, both having the same dataset. This will be our starting point for
performance regression tests. Of course, it goes without saying, both hosts have to
have exactly the same hardware configuration, otherwise our results would not be
meaningful.

For our purposes we’ve created a new EC2 instance with IP of 172.30.4.220. We
will use ClusterControl to provision it but first we need to setup passwordless SSH
communication between the ClusterControl node and this new host - this is required for
ClusterControl to be able to connect and add this node to the cluster.

What we do is:

Check the SSH key for root user on ClusterControl node

Remove authorized_keys on the new host, create new one with our SSH key, change
access rights to 600:

Pre-upgrade testing

1 root@ip-172-30-4-15:~# cat /root/.ssh/authorized_keys
2 ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDLPeKbHoF5tCJLUg16cWX-

GlKBcUWJSQsmWPwzY80Mpc4xTgk7dhrZFrf+VH5njoHnGomIUwAzUFxRfeK-
T7Ydx7fWLoHC27jTdeofSNMikz6GjJfMQf7tF/X2YhTHIxC7bSywgR43Mk-
4jZN

3 ...

11

Once it’s done, we should be able to connect to the server.

We also want to copy our ssh key to the new node:

1 root@ip-172-30-4-15:~# ssh 172.30.4.220
2 The authenticity of host ‘172.30.4.220 (172.30.4.220)’ can’t

be established.
3 ECDSA key fingerprint is 6e:80:23:e5:54:75:1f:28:56:94:b8:

ae:fc:c7:e5:44.
4 Are you sure you want to continue connecting (yes/no)? yes
5 Warning: Permanently added ‘172.30.4.220’ (ECDSA) to the

list of known hosts.
6 Welcome to Ubuntu 14.04 LTS (GNU/Linux 3.13.0-24-generic

x86_64)
7
8 * Documentation: https://help.ubuntu.com/
9
10 System information as of Fri Jan 15 08:42:14 UTC 2016
11
12 System load: 0.16 Processes: 113
13 Usage of /: 10.5% of 7.74GB Users logged in: 0
14 Memory usage: 2% IP address for eth0:

172.30.4.220
15 Swap usage: 0%
16
17 Graph this data and manage this system at:
18 https://landscape.canonical.com/
19
20 Get cloud support with Ubuntu Advantage Cloud Guest:
21 http://www.ubuntu.com/business/services/cloud
22
23
24 *** /dev/xvda1 should be checked for errors ***
25
26
27 The programs included with the Ubuntu system are free soft-

ware;
28 the exact distribution terms for each program are described

in the
29 individual files in /usr/share/doc/*/copyright.
30
31 Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent per-

mitted by
32 applicable law.
33
34 root@ip-172-30-4-220:~#

1 root@ip-172-30-4-220:~# rm /root/.ssh/authorized_keys ; vim
/root/.ssh/authorized_keys ; chmod 600 /root/.ssh/autho-
rized_keys

12

Once this is done, we should be fine to provision our new node as a slave to the
existing cluster. To do that, we need to open the ClusterControl UI and navigate to our
existing cluster. On the right hand side, there’s a drop down menu from which we pick
‘Add Node’.

Next step will be to file the necessary details for ClusterControl to create this new node:

We are passing here the IP of our new node, we also definitely want ClusterControl to
install the database software for us (you can see at the bottom it will be installed from
the Percona repository). We do not want to add this node to existing load balancers,
because we don’t want to see production traffic hitting our test box. Once you start the

1 root@ip-172-30-4-15:~# scp /root/.ssh/id_rsa 172.30.4.220:/
root/.ssh/ ; ssh 172.30.4.220 ‘chmod 600 /root/.ssh/id_rsa’

2 id_rsa
100% 1675 1.6KB/s 00:00

13

job, you can watch the progress in the ‘Logs’ section of the ClusterControl UI:

In this job, ClusterControl connects to the new node using the SSH connection we’ve
just set, installs new software, in our case Percona Server 5.6, and configures it using the
configuration template we selected in the ‘Add Node’ window. Once MySQL is ready,
ClusterControl uses xtrabackup to stream data from the master node. This process
takes some time, depending on your I/O performance, network throughput and size
of the dataset. It also, unfortunately, impacts performance of the production master as
Xtrabackup has to read a lot of data in order to transfer it to the new slave. The impact
can be seen in the graph below - a dip was caused by the provisioning of our new
node.

There are many ways to provision a slave. Some of them can cause less impact. It all
depends on the exact environment you are working in. You could take a snapshot of
slave’s volume, you could stop one of the slaves (if you can afford that) and rsync data
from it to the new slave.

Ok, by now, we have a new slave created and (eventually) synced with the master. Now
it’s time to deregister our 172.30.4.220 node from ClusterControl. We’ll do it from the

14

ClusterControl UI to avoid automated recovery.

Once it’s done, we want to make a copy of its data on some other host. We’ll use
another node, 172.30.4.236 for that. We’ll set it up in the same way as we did with
172.30.4.220 - setup ssh keys. This time we are not going to use CC to provision that
node (although we could have done that - provision using data from master and then
replace it with data from our stopped slave), we’ll do it manually. For that we need to
setup Percona repositories.

and install Percona Server 5.6

To finalize setting up MySQL, we need to copy the my.cnf from our test slave:

and then edit it on the new node so IP’s will point correctly:

On both nodes we want to add ‘skip_slave_start=1’ directive to my.cnf - we don’t want
replication to jump in and change our data.

MySQL is ready, we still need to transfer data though. Again, it can be done in multiple

1 root@ip-172-30-4-236:~# wget https://repo.percona.com/apt/
percona-release_0.1-3.$(lsb_release -sc)_all.deb

2 root@ip-172-30-4-236:~# dpkg -i percona-release_0.1-3.$(lsb_
release -sc)_all.deb

3 root@ip-172-30-4-236:~# apt-get update

1 root@ip-172-30-4-236:~# apt-get install percona-server-serv-
er-5.6

1 root@ip-172-30-4-220:~# scp /etc/mysql/my.cnf 172.30.4.236:/
etc/mysql/

1 root@ip-172-30-4-236:~# sed --in-place
‘s/172.30.4.220/172.30.4.236/g’ /etc/mysql/my.cnf

15

ways - EBS snapshots, xtrabackup, scp, rsync. This time, to make it more interesting,
we’ll use rsync to copy the dataset. You need to keep in mind that MySQL has to be
stopped in order to copy the data correctly using rsync. First things first - we need to
disable innodb_fast_shutdown on the host which we’ll be upgrading to MySQL 5.7. This
is related to incompatibilities in InnoDB which may impact our upgrade. We’ll choose
172.30.4.220 for upgrade so we need to run on it:

We’ll stop MySQL on both ‘donor’ node and new one, then we can start rsync’ing data
using the rsync-over-ssh.

After a while (longer or shorter - it depends on your I/O and network performance and
a size of your data), data should be transferred to the other node. We need to make
sure that owner is set correctly on transferred files and then we can try to start MySQL
and see if it works.

When we are ready with two nodes, we can upgrade 172.30.4.220 to MySQL 5.7.
First we need to setup repositories. We will follow the steps described on the MySQL
website:
https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/

One of the gotchas we’ve found while doing it is how MySQL 5.7 looks for some server
variables. For example, to find pid file, it executes:

In order for this command to work, you need to have a line like this:

in [mysqld_safe] section of your my.cnf. If you do not have it or if you have it put in
different (but correct) way like, let’s say:

1 mysql> set global innodb_fast_shutdown=0;

1 root@ip-172-30-4-220:~# service mysql stop
2 root@ip-172-30-4-236:~# service mysql stop
3 root@ip-172-30-4-220:~# rsync -avz -e “ssh -o StrictHostKey-

Checking=no -o UserKnownHostsFile=/dev/null” --progress /
var/lib/mysql/ 172.30.4.236:/var/lib/mysql/

1 root@ip-172-30-4-236:~# chown -R mysql.mysql /var/lib/mysql
2 root@ip-172-30-4-236:~# service mysql start

1 root@ip-172-30-4-220:~# wget http://dev.mysql.com/get/mysql-
apt-config_0.6.0-1_all.deb

2 root@ip-172-30-4-220:~# dpkg -i mysql-apt-config_0.6.0-1_all.
deb

3 root@ip-172-30-4-220:~# apt-get update
4 root@ip-172-30-4-220:~# apt-get install mysql-server

1 my_print_defaults mysqld_safe | sed -n ‘s/--pid-file=//p’

1 pid-file=/var/run/mysqld/mysql.pid

1 pid_file=/var/run/mysqld/mysql.pid

https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/

16

MySQL 5.7 init script will not be able to start/stop the service correctly (i.e. MySQL will
start but the init script won’t detect it is running) and apt-get will fail.

Once MySQL 5.7 is installed and started, we need to execute ‘mysql_upgrade’ script,
which is supposed to fix some of the known incompatibilities in schema and file formats.

4.2. Collect data for regression tests

In the previous chapter, we accomplished the upgrade to MySQL 5.7. We also have a
MySQL 5.6 node with the same dataset. This allows us to do some regression testing -
we will use pt-upgrade, a tool from Percona Toolkit. The main idea behind this tool is
to replay a set of queries on two different MySQL instances and compare the results.
The tool is looking for performance regressions along with changes in the result set
(different number of rows or even different row order). To be able to start tests, we
need to have a set of queries to replay. One of the formats pt-upgrade understands is
the MySQL slow query log but it can also understand binary logs, general log or even
tcpdump data.

Collecting slow logs is the most obvious and easy way of gathering the data for pt-
upgrade. Unfortunately, it doesn’t go without performance impact. We’ve done some
testing in the past and we shared results in one of our blog posts:
http://severalnines.com/blog/become-mysql-dba-blog-series-query-tuning-process

In short, enabling slow log can introduce transient slowdowns which make database
performance and user experience not as stable as it should be.

Instead of using the slow query log, we can use data collected by tcpdump. It also has
its impact on the system (as discussed in the blog post mentioned above), but in our
case we don’t have to execute it on our database - we should be able use it on our
“application” server.

This choice has some repercussions. There will be some impact on this server. However,
most of the time, you have a number of application servers - usually more than
databases. Using tcpdump on one of the application hosts will impact less users than
using it directly on a database server. When doing that, you need to remember that you
will be able to collect only those queries which were executed by this particular server.
If your infrastructure design is more complex (i.e. you have many ‘types’ of application
servers, each type serving different traffic), you may need to collect the data on many
hosts. Otherwise you’ll not cover all of your queries - and this is the goal we are aiming
at.

Another question you need to answer is - how long do you need to collect the data? It
all depends on your workload. If your workload doesn’t change in time, you probably
don’t need to spend too much time collecting. On the other side, you have cases when
the workload varies during the day and you may need to collect multiple samples over
the 24 hours. The goal here is to collect all queries you execute against your database.
If you have an ETL process or batch load job which runs every now and then (i.e. on
weekly/monthly basis), you want to ensure those queries will also be collected.

In our case, the “benchmark application” executes pretty much the same queries over

1 root@ip-172-30-4-220:~# mysql_upgrade -ppass

http://severalnines.com/blog/become-mysql-dba-blog-series-query-tuning-process

17

and over again so there’s no need to collect data for too long. Unfortunately, we ran
into an issue with MaxScale at the time of writing - for some reason data exchanged
between proxy and the application cannot be parsed properly by pt-upgrade. So we
resorted to a less ideal solution - run tcpdump on the proxy node and collect data
exchanged between it and database servers.

We can use tcpdump to grab this traffic with the following line. Please note port 3306 -
it will collect data exchanged by MaxScale and MySQL servers.

4.3. Regression tests using pt-upgrade

Once we’ve captured enough data (in our case it was ~5 minutes worth of data - as
we said, sysbench repeats queries very often), we can start our pt-upgrade process.
The first run will consist of running the queries against MySQL 5.6. Please note we used
‘--save-results’ argument. In short, pt-upgrade allows you to either store your data as
a baseline and then compare other nodes against this result. You can also pass two
DSN’s and run queries on both hosts at once. We’d suggest to always create baseline
results and reuse them, though. Thanks to that, you will need to run queries just on the
one host, making the process twice as fast. One run may take hours if your query log is
large and you also never know how many times you’ll have to rerun pt-upgrade - you
may want to test, for example, different configuration tweaks.

Another important thing to remember - when running pt-upgrade, you need to ensure
both databases are at the same state buffer pool-wise. You don’t want to run queries
when one of the databases is warm and has data in its caches - your results will not be
correct. To avoid impact from cache, you should clear them before you start the pt-
upgrade process:

This should be enough to make sure our databases are in ‘cold’ state.

To ensure we test both best and worse case scenarios, we’ll use two runs - first on a
cold database and then we’ll execute queries on a warm database - immediately after
our first run, data should be in the buffer pool.

Yet another thing you want to keep in mind is network latency - even if you use the
same source host for your pt-upgrade, it still may happen that one of the test servers is
further away in terms of network communication. This may have an impact on the load.
To avoid this, we’d suggest to execute pt-upgrade directly on the node, using socket - it
should minimize the latency. Once we have results, we can copy the baseline directory
to the 5.7 host and, again, use local socket to connect and test performance of the
queries.

Our first run:

1 root@ip-172-30-4-15:~# tcpdump -s 65535 -x -nn -q -tttt -i
any port 3306 > mysql.tcp.txt

1 root@ip-172-30-4-236:~# service mysql restart ; echo “3” > /
proc/sys/vm/drop_caches

2 root@ip-172-30-4-220:~# service mysql restart ; echo “3” > /
proc/sys/vm/drop_caches

18

1 root@ip-172-30-4-236:~# ./pt-upgrade h=localhost,p=pass,u=-
root,D=sbtest --type=tcpdump --save-results 56_results_cold/
mysql.tcp.txt

2
3 #---

4 # Logs
5 #---

6
7 File: mysql.tcp.txt
8 Size: 1003693001
9
10 #---

11 # Hosts
12 #---

13
14 host1:
15
16 DSN: h=localhost
17 hostname: ip-172-30-4-236
18 MySQL: Percona Server (GPL), Release 76.1, Revision

5759e76 5.6.28
19
20 Saving results in 56_results_cold/
21 TCP session 172.30.4.15:45870 had errors, will save them in

/tmp/pt-upgrade-errors.NvLv7YU
22 mysql.tcp.txt: 2% 21:34 remain
23
24 . . .
25 mysql.tcp.txt: 99% 00:05 remain
26
27 #---

28 # Stats
29 #---

30
31 failed_queries 0
32 not_query 2150
33 not_select 29380
34 queries_filtered 0
35 queries_no_diffs 0
36 queries_read 133104
37 queries_with_diffs 0
38 queries_with_errors 0
39 queries_written 101574

19

As you can see, pt-upgrade processed 133k queries, 101k queries were written in the
results output. By default, pt-upgrade runs only SELECT queries - data on both of our
nodes will not be affected. Of course, you may want to also run DML’s but this will
require restoring databases to their original state and makes the process more time-
consuming.

Second warm run:

Next, we need to copy both baseline directories to our 5.7 host and run pt-upgrade on
it.

In our case, warm workload was clean - no discrepancies and regressions have
been found. Cold workload, on the other hand, reported some of the queries to be
significantly slower on MySQL 5.7. For example:

1 root@ip-172-30-4-236:~# ./pt-upgrade h=localhost,p=pass,u=-
root,D=sbtest --type=tcpdump --save-results 56_results_warm/
mysql.tcp.txt

1 root@ip-172-30-4-236:~# scp -r 56_results_* 172.30.4.220:
2 root@ip-172-30-4-220:~# ./pt-upgrade 56_results_cold/ h=lo-

calhost,p=pass,u=root,D=sbtest > 57.cold
3 root@ip-172-30-4-220:~# ./pt-upgrade 56_results_warm/ h=lo-

calhost,p=pass,u=root,D=sbtest > 57.warm

1 ##
############

2 # Query class 558CAEF5F387E929
3 ##

############
4
5 Reporting class because there are 3 query diffs.
6
7 Total queries 3
8 Unique queries 3
9 Discarded queries 0
10
11 select c from sbtest? where id=?
12
13 ##
14 ## Query time diffs: 3
15 ##
16
17 -- 1.
18
19 0.000114 vs. 0.007351 seconds (64.5x increase)
20
21 SELECT c FROM sbtest9 WHERE id=496353
22
23 -- 2.
24

20

Usually, it is good to confirm such results manually (well, not necessarily manually -
automation is better, it’s just important to compare results outside of pt-upgrade as
well) - we’ve seen false positives in pt-upgrade results. In this case, regressions have
been confirmed. Next step would be to try and identify what caused those regressions.
It can be anything - query execution plan, some MySQL settings which need tuning. We
checked the query execution plans as this is the most obvious and common reason for
such discrepancies. All looked good and we are going to skip further checks because
we found those regressions to only impact a cold database and we will strive to avoid
running in production with a cold database.

4.4. Regression tests of application
Another level of database testing involves running a regular suite of acceptance tests.
Every application should have a set of tests that are executed, for example, when a new
release is getting close to go live. Such tests should cover as much of the functionality
as possible - you want to test all processes that are used in the application. What needs
to be tested, it depends on the application, of course. If you run a e-commerce website,
you may want to check if the process of buying items works flawlessly. Can you add
item to a cart? Can you check out? Is the order processed correctly? Is the payment
processed correctly? You should see a pattern here - test everything, but at a minimum,
test the core functionality that drives your business.

Such tests, most likely, require interaction between DBA’s and developers and the
required coordination can slow things down. That’s why we’ve executed generic tests
with the help of pt-upgrade - to catch the most obvious issues without needing to wait
for the development team.

Our ‘application’ is pretty simple, therefore we are just going to point it to our MySQL
5.7 test instance and run it there. The exact command which we will execute is:

We are going to run our tests for 10 minutes and see how it behaves when using
MySQL 5.7. Of course, longer is better but again, we are using a simple application
which doesn’t do anything complex. Let’s take a look at the results of our run:

25 0.000113 vs. 0.009107 seconds (80.6x increase)
26
27 SELECT c FROM sbtest18 WHERE id=495601
28
29 -- 3.
30
31 0.000107 vs. 0.029717 seconds (277.7x increase)
32
33 SELECT c FROM sbtest18 WHERE id=502477

1 root@ip-172-30-4-15:~# sysbench --test=/root/sysbench/sys-
bench/tests/db/oltp.lua --num-threads=6 --max-requests=0
--max-time=600 --mysql-host=172.30.4.220 --mysql-user=sbtest
--mysql-password=sbtest --mysql-port=3306 --oltp-tables-
count=32 --report-interval=10 --oltp-skip-trx=on --oltp-ta-
ble-size=1000000 run

21

We didn’t get any errors, which means our queries work just fine on MySQL 5.7. Latency
looks also good.

At this stage, more data is better. If you have good profiling of database-related code
in your application, you should use it. If you use tools like New Relic, it’s also great to
keep an eye on it. You should have trending data on your MySQL installation - it can
be a good idea to include new MySQL node in your monitoring and trending systems.
You want to figure out if there are any issues with the code and any SQL used. But you
should also look into performance metrics, and perhaps spot something which may
have been missed by previous tests with pt-upgrade.

4.5. Bring back the node into replication
It’s time to conclude our tests with one final check - we want to bring the new MySQL
5.7 instance into our replication topology. It may happen that, for some reason, old and
new MySQL versions won’t work correctly with your query mix. In general, old master
and new slave should work just fine, and it indeed works most of the time. We need
to check that this is true in our case. We will use a mixed replication environment for a
while, with a 5.6 master and 5.7 slaves - unless we can accept downtime and upgrade
all nodes at the same time.

The easiest way in our case will be to start replication on our MySQL 5.7 instance,
and then bring it into the cluster using the ClusterControl UI. Please note that we’ve
changed its data so replication will most likely fail at some point. Additionally, at the
moment of writing, Percona’s Xtrabackup didn’t work correctly with MySQL 5.7 (some
limited support for it has been added in the first release candidate for xtrabackup 2.4).

1 OLTP test statistics:
2 queries performed:
3 read: 1754942
4 write: 501412
5 other: 0
6 total: 2256354
7 transactions: 0 (0.00 per

sec.)
8 read/write requests: 2256354 (3760.51

per sec.)
9 other operations: 0 (0.00 per

sec.)
10 ignored errors: 0 (0.00 per

sec.)
11 reconnects: 0 (0.00 per

sec.)
12
13 General statistics:
14 total time: 600.0122s
15 total number of events: 125353
16 total time taken by event execution: 3599.6573s
17 response time:
18 min: 14.56ms
19 avg: 28.72ms
20 max: 586.51ms
21 approx. 95 percentile: 73.54ms

22

Thus it was not possible for ClusterControl to automatically rebuild this node using
xtrabackup. We need to do it manually, using rsync. We’ll stop our MySQL 5.7 node,
stop one of the slaves, making sure we disabled fast shutdown before that. Then we’ll
rsync data from 5.6 to the 5.7 node. Once this is done, we can start the MySQL on our
MySQL slave. On our MySQL 5.7 host, we’ll make sure the owner is correctly set. We’ll
remove the auto.cnf file, start MySQL, and and finally, run mysql_upgrade. Please note
that we’ve just copied data from MySQL 5.6 so that’s why we need to run the mysql_
upgrade again. After that has finished, we need to restart our MySQL 5.7 to reload the
upgraded tables.

On our slave, 172.30.4.169:

And then, the rest of the process:

In the process above, we removed auto.cnf file - this is because we’ve copied the whole
contents of the data directory from our slave and as a result, our new, 5.7 host would
have the same UUID as that slave. This would break the replication, therefore we had to
remove that file. This will force the generation of a new UUID.

Once this whole process is done, we need to setup replication from the 5.6 master to
our 5.7 slave. For that, we need to check the current replication status on our MySQL
5.7. The exact steps may depend on how you have your replication configured. If
you store your replication data in InnoDB tables, no further steps other than maybe
‘START SLAVE’ should be required. If you use files instead, things may be a bit different
(although they should not).

In our case, no action was needed as our 5.7 host started the replication as soon as it
was restarted after running mysql_upgrade.

So, we have our MySQL 5.7 slaving off a 5.6 master. Now, we’ll use the ClusterControl
‘Add Node’ job to register that new node to our cluster.

1 root@ip-172-30-4-220:~# service mysql stop

1 mysql> set global innodb_fast_shutdown=0;
2 Query OK, 0 rows affected (0.00 sec)

1 root@ip-172-30-4-169:~# service mysql stop
2 root@ip-172-30-4-169:~# rsync -avz -e “ssh -o StrictHost-

KeyChecking=no -o UserKnownHostsFile=/dev/null” --progress
--delete-after /var/lib/mysql/ 172.30.4.220:/var/lib/mysql/

3 root@ip-172-30-4-169:~# service mysql start
4 root@ip-172-30-4-220:~# chown -R mysql.mysql /var/lib/mysql/
5 root@ip-172-30-4-220:~# rm /var/lib/mysql/auto.cnf
6 root@ip-172-30-4-220:~# service mysql start
7 root@ip-172-30-4-220:~# mysql_upgrade -ppass
8 root@ip-172-30-4-220:~# service mysql restart

23

Once the job completes, we should see our new node in ClusterControl.

We don’t want to put any production traffic on our upgraded node yet. Therefore
we don’t want to add it to any of proxies or load balancers. You have to make sure
this is the case also in your environment. At the moment, all we want is to observe
replication traffic on our 5.7 node and let it run for couple of days - just to make sure
the replication works correctly with new MySQL version. Obviously, working replication
is a requirement to make the upgrade process as non-impacting as possible.

24

5.1. Slave upgrade process

After testing the new MySQL version, and verifying that our 5.7 slave keeps up with the
replication as it should, we can now start upgrading our slaves. We are going to use the
same process as for upgrading our test node:

• Disable innodb_fast_shutdown
• Shut down MySQL
• Upgrade binaries to MySQL 5.7
• Start MySQL
• Run mysql_upgrade
• Restart MySQL
• Make sure replication is working and if needed, fix it

Such process has to be executed on every slave in our topology.

In this step, we need to confirm that we have an entry like ‘pid-file=/path/to/mysql.pid’
in [mysqld_safe] section of my.cnf

Upgrade

1 root@ip-172-30-4-169:~# mysql -ppass -e “set global innodb_
fast_shutdown=0;”

2 root@ip-172-30-4-169:~# service mysql stop
3 root@ip-172-30-4-169:~# wget http://dev.mysql.com/get/mysql-

apt-config_0.6.0-1_all.deb
4 root@ip-172-30-4-169:~# dpkg -i mysql-apt-config_0.6.0-1_all.

deb

25

We are using MaxScale in our setup, therefore some impact may be visible in
the application - there will be some short periods of lack of access to data. More
information about this issue can be found at https://mariadb.atlassian.net/browse/MXS-
579.

Once all slaves have been upgraded to MySQL 5.7, the last step will be to failover from
current master to one of upgraded slaves.

5.2. Switchover process and upgrade of the old master

Switchover can be executed in numerous ways but as long as we use GTID in our
replication, we can use ClusterControl perform the master switchover. This is useful
as ClusterControl will perform all required steps, including issuing lacking grants and
running CHANGE MASTER commands. What we need to do is to decide which slave to
promote, and then run a ‘Promote Slave’ job on it.

1 root@ip-172-30-4-169:~# apt-get update
2 root@ip-172-30-4-169:~# apt-get install mysql-server
3 root@ip-172-30-4-169:~# mysql_upgrade -ppass
4 root@ip-172-30-4-169:~# service mysql restart

https://mariadb.atlassian.net/browse/MXS-579
https://mariadb.atlassian.net/browse/MXS-579

26

After we confirm that we indeed want to promote this node, ClusterControl will execute
a master switch.

When the switch completes, a couple of steps are still to be executed. First, we need to
upgrade the old master to MySQL 5.7 using the process we’ve discussed earlier. Once
all nodes are running MySQL 5.7, the last step will be to make sure that no password
expiration will surprise us. As we mentioned at the beginning, there are couple of ways
to do that. We can, for example, set a fixed expiration period for the password

or disable the password expiration for a particular user.

You need to go over the users and make sure all of them have a correct password
expiration policy. Changes should be introduced on the master.

1 ALTER USER backupuser@localhost PASSWORD EXPIRE INTERVAL 10
DAY;

1 ALTER USER backupuser@localhost PASSWORD EXPIRE NEVER;

27

As one may have noticed, the process we described above is not graceful - restarts
of slaves and final switchover caused connections to break and our application had
to retry them in order to make them work. Slave restarts and failovers may happen at
any time, therefore it is something the application should be able to handle. It’s not an
elegant solution, though.

In our case, the problem was related to the proxy - MaxScale. In its current version,
it cannot handle nodes going down - the connection is terminated and an error
is returned to the application. This would not be a problem if our application can
catch these errors and retry transactions as needed. In case this is a problem for
the application, there’s a solution for that - you can use a proxy that fails over the
connections. One of the proxies which can perform a graceful failover is ProxySQL, an
SQL-aware load balancer created by René Cannaò. We’ll guide you through the process
of installing the software and setting up a simple read-write split configuration.

6.1. Installation of ProxySQL
Initial installation is pretty simple - all you need to do is to grab the latest binaries from
the site:
https://github.com/sysown/proxysql/releases/

and install them using rpm or dpkg:

Finally, we can start the service.

6.2. Configuring ProxySQL for graceful switchover with
ClusterControl
The first time you start ProxySQL, it loads an initial configuration which allows you to
connect to it and configure it using MySQL client and SQL-like language. We are not
going to cover all aspects of the setup, we are going to focus on the steps required to
configure read-write split in our cluster. Let’s start by connecting to the administrative
console and defining some servers.

Graceful upgrade process
using ProxySQL

1 root@cmon:~# wget https://github.com/sysown/proxysql/releas-
es/download/v1.1.1-beta.5/proxysql_1.1.1-ubuntu14_amd64.deb

2
3 root@cmon:~# dpkg -i proxysql_1.1.1-ubuntu14_amd64.deb

1 root@cmon:~# service proxysql start
2 Starting ProxySQL: DONE!

https://github.com/sysown/proxysql/releases/

28

What’s important to mention - hostgroups are used to aggregate different types of
hosts. They can be hosts which accept similar type of traffic or are used by a particular
application. In our case, hostgroup ‘0’ will be used for ‘master’ and hostgroup ‘1’ will be
used for slaves.

ProxySQL has been built with a concept similar to what’s used in the CLI of network
devices - changes in configuration are not applied immediately to the system. You
have to explicitly load them ‘to runtime’ to make them work. You also need to save the
changes to disk, to make them permanent.

Once we’re done with this, next step is to configure users that ProxySQL will use to
connect to the backend:

This step is needed for every user that you plan to use to connect to the database via
the proxy. Please note the default hostgroup is set to hostgroup 0 - we’ll use this in our
next step.

Next things to configure are the query rules. ProxySQL uses them to decide how queries
should be routed - this is done by specifying a pattern (that the query should match)
and a hostgroup, to which the query should be routed.

1 root@cmon:~# mysql -u admin -padmin -h 127.0.0.1 -P6032
2
3 mysql> INSERT INTO mysql_servers(hostgroup_id, hostname,

port) VALUES (0,’172.30.4.36’,3306);
4 Query OK, 1 row affected (0.00 sec)
5
6 mysql> INSERT INTO mysql_servers(hostgroup_id, hostname,

port) VALUES (1,’172.30.4.169’,3306);
7 Query OK, 1 row affected (0.00 sec)
8
9 mysql> INSERT INTO mysql_servers(hostgroup_id, hostname,

port) VALUES (1,’172.30.4.171’,3306);
10 Query OK, 1 row affected (0.00 sec)

1 mysql> LOAD MYSQL SERVERS TO RUNTIME;
2 Query OK, 0 rows affected (0.00 sec)
3
4 mysql> SAVE MYSQL SERVERS TO DISK;
5 Query OK, 0 rows affected (0.10 sec)

1 mysql> INSERT INTO mysql_users (username, password, default_
hostgroup) VALUES (‘sbtest’, ‘sbtest’, 0);

2 Query OK, 1 row affected (0.00 sec)
3
4 mysql> LOAD MYSQL USERS TO RUNTIME;
5 Query OK, 0 rows affected (0.00 sec)
6
7 mysql> SAVE MYSQL USERS TO DISK;
8 Query OK, 0 rows affected (0.13 sec)

29

In our case we are going to set two rules. We’ll leverage the fact that, by default, all
queries executed as user ‘sbtest’ are set to the hostgroup 0, the ‘master’ in our setup
- that’s how we set it when adding an user entry. What’s left is to route SELECTs to
hostgroup 1 (slaves) and explicitly route queries like SELECT … FOR UPDATE to the
master.

Those two inserts do the trick. The rest is up to ProxySQL mechanisms to make sure
that whole transactions will end up in the correct place, session settings are set correctly
and so on.

It’s worth mentioning that ProxySQL loads query rules in the order in which they were
created - in our case we first check ‘SELECT … FOR UPDATE’ type of queries and then,
any query which haven’t matched that rule will be tested against second pattern. Those
which did not match neither of rules will be routed to the user’s default hostgroup.

As usual, we finish by loading the changes to runtime and saving them to a persistent
storage.

ProxySQL’s design doesn’t require having MySQL backends actively monitored - it
keeps trying to route the queries to the desired hostgroup as long as timeout is not
exceeded (10 seconds by default). Health is constantly monitored, not only during
connection time but also during the execution of queries - in case of failures, the traffic
is routed somewhere else. Having said that, in some cases it’s beneficial to setup active
monitoring - ProxySQL uses it to determine the replication lag on the node or to check
the read_only state on the node. We are going to leverage this feature, therefore we
need to set things up.

1 mysql> INSERT INTO mysql_query_rules(active,match_pat-
tern,destination_hostgroup,apply) VALUES(1,’^SELECT.*FOR
UPDATE$’,0,1);

2 Query OK, 1 row affected (0.00 sec)
3
4 mysql> INSERT INTO mysql_query_rules(active,match_pat-

tern,destination_hostgroup,apply) VALUES(1,’^SELECT’,1,1);
5 Query OK, 1 row affected (0.01 sec)

1 mysql> LOAD MYSQL QUERY RULES TO RUNTIME;
2 Query OK, 0 rows affected (0.01 sec)
3
4 mysql> SAVE MYSQL QUERY RULES TO DISK;
5 Query OK, 0 rows affected (0.13 sec)

1 mysql> UPDATE global_variables SET variable_value=”cmon”
WHERE variable_name=”mysql-monitor_username”;

2 Query OK, 1 row affected (0.00 sec)
3
4 mysql> UPDATE global_variables SET variable_value=”cmon”

WHERE variable_name=”mysql-monitor_password”;
5 Query OK, 1 row affected (0.01 sec)
6
7 mysql> LOAD MYSQL VARIABLES TO RUNTIME;
8 Query OK, 0 rows affected (0.00 sec)

30

What we did was to update ‘global_variables’ table and set ‘mysql-monitor_password’
and ‘mysql-monitor_username’ variables to a user who will be able to connect and
collect the data.

We are getting closer to the end, but there are still few things remaining. When it
comes to handling switchovers, ProxySQL does not do that automatically. By default,
ProxySQL does not track replication topology - some external input is required to
reconfigure ProxySQL whenever a change in the replication topology has been made.
You may need to extend your scripts which handle failover to connect to the ProxySQL
and make necessary changes in its configuration to, for example, promote a slave to a
master. This is not as hard as it sounds - when done right, it’s possible to implement a
graceful master switch in less than one second.

For MySQL replication, though, ProxySQL has an exception. A very common pattern is
to use the ‘read_only’ variable to differentiate between master and slaves. Slaves are,
obviously, read only so they have read_only=1. The Master has this variable disabled.
This pattern is frequently used by different tools that manage failovers. ProxySQL
can leverage this standard and automatically perform the topology changes. This
functionality require that you have MySQL monitoring set correctly in ProxySQL
variables (what we did in the previous step). You also want to make sure it works
correctly by, for example, by running select like the one below:

9 mysql> SAVE MYSQL VARIABLES TO DISK;
10
11 Query OK, 54 rows affected (0.13 sec)

1 mysql> SELECT hostname, port, DATETIME(time_
start/1000/1000,’unixepoch’) `time` , connect_success_time ,
connect_error FROM monitor.mysql_server_connect_log ORDER BY
time_start DESC LIMIT 10;

2 +--------------+------+---------------------+---------------
-------+---------------+

3 | hostname | port | time | connect_suc-
cess_time | connect_error |

4 +--------------+------+---------------------+---------------
-------+---------------+

5 | 172.30.4.171 | 3306 | 2016-02-17 08:16:05 | 1001
| NULL |

6 | 172.30.4.169 | 3306 | 2016-02-17 08:16:05 | 999
| NULL |

7 | 172.30.4.36 | 3306 | 2016-02-17 08:16:05 | 970
| NULL |

8 | 172.30.4.171 | 3306 | 2016-02-17 08:14:05 | 999
| NULL |

9 | 172.30.4.169 | 3306 | 2016-02-17 08:14:05 | 1095
| NULL |

10 | 172.30.4.36 | 3306 | 2016-02-17 08:14:05 | 1232
| NULL |

11 | 172.30.4.171 | 3306 | 2016-02-17 08:12:05 | 1537
| NULL |

12 | 172.30.4.169 | 3306 | 2016-02-17 08:12:05 | 1360
| NULL |

31

As you can see, we’ve listed some recent connections from the monitor. There are
no errors so we are good to go. Of course, you should also confirm that read_only
variables are set correctly on your MySQL instances - enabled on slaves, disabled on the
master.

The feature we’ve been talking about can be enabled by a single insert into the mysql_
replication_hostgroups table.

SELECT should explain what it is all about - we’ve inserted two values - one for writer
hostgroup and one for reader hostgroup. In our case, we’ve configured the proxy
such that whenever a node is determined as a writer (node has read_only set to 0 - we
expect it to be a single node, master), it will be assigned to hostgroup 0 - the one which
handles write traffic in our setup. Nodes determined as readers (nodes with read_only
set to 1 - we expect them to be our slaves) will be assigned to hostgroup 1 - again, the
one which handles SELECT (except for SELECT … FOR UPDATE).

Of course, we need to save the changes once more and update the running
configuration.

There’s one final step and we will be ready to perform graceful switchover.

13 | 172.30.4.36 | 3306 | 2016-02-17 08:12:05 | 1497
| NULL |

14 | 172.30.4.171 | 3306 | 2016-02-17 08:10:05 | 864
| NULL |

15 +--------------+------+---------------------+---------------
-------+---------------+

16 10 rows in set (0.00 sec)

1 mysql> insert into mysql_replication_hostgroups values (0,
1);

2 Query OK, 1 row affected (0.00 sec)
3
4 mysql> select * from mysql_replication_hostgroups\G
5 *************************** 1. row

6 writer_hostgroup: 0
7 reader_hostgroup: 1
8 1 row in set (0.00 sec)

1 mysql> LOAD MYSQL SERVERS TO RUNTIME;
2 Query OK, 0 rows affected (0.00 sec)
3
4 mysql> SAVE MYSQL SERVERS TO DISK;
5 Query OK, 0 rows affected (0.14 sec)

1 mysql> UPDATE global_variables SET variable_value=20000
WHERE variable_name=’mysql-connect_timeout_server_max’;

2 Query OK, 1 row affected (0.00 sec)
3
4 mysql> SAVE MYSQL VARIABLES TO DISK;

32

What we just did was to increase the maximum timeout to 20000 milliseconds (from
default of 10000 milliseconds) - as we mentioned earlier, ProxySQL determines the
health of the node the moment it opens a connection. If a connection cannot be
opened, another node from the hostgroup is used. If there’s no available node,
ProxySQL will try for ‘mysql-connect_timeout_server_max’ milliseconds to find another
reachable node before an error is thrown back to the application. Switchover process
executed by ClusterControl involves 10 seconds of waiting to allow for existing
transactions to complete and then the failover itself takes couple more seconds. This
make whole process longer than default timeout of 10 seconds in ProxySQL. Once
we made this change and updated the running configuration, we are ready to initiate
switchover from ClusterControl. There’s one more thing worth mentioning. By default,
after switchover, ProxySQL configures the new master also as a member of the ‘slaves’
hostgroup - in our case it means that new master will be a part of both hostgroup 0
and 1. This is intentional - if you have only single slave to failover to, you want it to
handle reads too. You can change this behavior in two ways. First method - you can
disable it completely by running:

But this may cause troubles if you’ll end up with a single slave to promote after a master
failure.

Second option is, basically, to manually remove the entry from the mysql_servers table
when you decide that master should not receive reads. In our case, the table may look
like this:

We’d need to run the following SQL to remove read traffic from the master:

5 Query OK, 55 rows affected (0.08 sec)
6
7 mysql> LOAD MYSQL VARIABLES TO RUNTIME;
8 Query OK, 0 rows affected (0.00 sec)

1 mysql> UPDATE global_variables SET variable_value=’false’
WHERE variable_name=’mysql-monitor_writer_is_also_reader’;

2 Query OK, 1 row affected (0.00 sec)
3
4 mysql> LOAD MYSQL VARIABLES TO RUNTIME;
5 Query OK, 0 rows affected (0.01 sec)
6
7 mysql> SAVE MYSQL VARIABLES TO DISK;
8 Query OK, 54 rows affected (0.08 sec)

1 mysql> select hostgroup_id, hostname, port, status from
mysql_servers;

2 +--------------+--------------+------+--------+
3 | hostgroup_id | hostname | port | status |
4 +--------------+--------------+------+--------+
5 | 0 | 172.30.4.171 | 3306 | ONLINE |
6 | 1 | 172.30.4.169 | 3306 | ONLINE |
7 | 1 | 172.30.4.36 | 3306 | ONLINE |
8 | 1 | 172.30.4.171 | 3306 | ONLINE |
9 +--------------+--------------+------+--------+
10 4 rows in set (0.00 sec)

33

Failover executed from ClusterControl under a ProxySQL setup the way we did it will
look like below from the application point of view:

1 mysql> DELETE FROM mysql_servers WHERE host-
name=’172.30.4.171’ AND hostgroup_id=1;

2 Query OK, 1 row affected (0.00 sec)
3
4 mysql> LOAD MYSQL SERVERS TO RUNTIME;
5 Query OK, 0 rows affected (0.00 sec)
6
7 mysql> SAVE MYSQL SERVERS TO DISK;
8 Query OK, 0 rows affected (0.12 sec)

1 [60s] threads: 1, tps: 0.00, reads: 846.00, writes:
240.00, response time: 40.23ms (95%), errors: 0.00, recon-
nects: 0.00

2 [61s] threads: 1, tps: 0.00, reads: 814.00, writes:
232.00, response time: 40.12ms (95%), errors: 0.00, recon-
nects: 0.00

3 [62s] threads: 1, tps: 0.00, reads: 878.00, writes:
252.00, response time: 35.81ms (95%), errors: 0.00, recon-
nects: 0.00

4 [63s] threads: 1, tps: 0.00, reads: 841.00, writes:
240.00, response time: 40.18ms (95%), errors: 0.00, recon-
nects: 0.00

5 [64s] threads: 1, tps: 0.00, reads: 914.98, writes:
259.99, response time: 26.58ms (95%), errors: 0.00, recon-
nects: 0.00

6 [65s] threads: 1, tps: 0.00, reads: 4.00, writes: 0.00,
response time: 0.00ms (95%), errors: 0.00, reconnects: 0.00

7 [66s] threads: 1, tps: 0.00, reads: 0.00, writes: 0.00,
response time: 0.00ms (95%), errors: 0.00, reconnects: 0.00

8 [67s] threads: 1, tps: 0.00, reads: 0.00, writes: 0.00,
response time: 0.00ms (95%), errors: 0.00, reconnects: 0.00

9 [68s] threads: 1, tps: 0.00, reads: 0.00, writes: 0.00,
response time: 0.00ms (95%), errors: 0.00, reconnects: 0.00

10 [69s] threads: 1, tps: 0.00, reads: 0.00, writes: 0.00,
response time: 0.00ms (95%), errors: 0.00, reconnects: 0.00

11 [70s] threads: 1, tps: 0.00, reads: 0.00, writes: 0.00,
response time: 0.00ms (95%), errors: 0.00, reconnects: 0.00

12 [71s] threads: 1, tps: 0.00, reads: 0.00, writes: 0.00,
response time: 0.00ms (95%), errors: 0.00, reconnects: 0.00

13 [72s] threads: 1, tps: 0.00, reads: 0.00, writes: 0.00,
response time: 0.00ms (95%), errors: 0.00, reconnects: 0.00

14 [73s] threads: 1, tps: 0.00, reads: 0.00, writes: 0.00,
response time: 0.00ms (95%), errors: 0.00, reconnects: 0.00

15 [74s] threads: 1, tps: 0.00, reads: 0.00, writes: 0.00,
response time: 0.00ms (95%), errors: 0.00, reconnects: 0.00

16 [75s] threads: 1, tps: 0.00, reads: 0.00, writes: 0.00,
response time: 0.00ms (95%), errors: 0.00, reconnects: 0.00

34

There’s a period of inactivity which potentially may cause some stalls for users, but
the application won’t be affected as much as it would have been if the proxy had
terminated some transactions on the fly. Additionally, slave restarts (needed in the
process of upgrading slaves to 5.7) do not affect our application when using ProxySQL
while they do that when using latest (1.2.1) stable build of MaxScale.

As you can see, the process of upgrading MySQL from MySQL 5.6 to MySQL 5.7 is not
a complex one. It is definitely a time-consuming process, though - you need to spend a
lot of time understanding the changes which may affect your environment, build a solid
test environment and do tests in order to make sure your application won’t be affected
by the upgrade. There are some mines you can step on, like SQL mode changes or
password expiration which potentially may change its current behavior and impact you
long after the upgrade. On the pro side, at the end you’ll be using the best MySQL
version to date - both in terms of performance under high concurrency and a great new
feature set.

17 [76s] threads: 1, tps: 0.00, reads: 0.00, writes: 0.00,
response time: 0.00ms (95%), errors: 0.00, reconnects: 0.00

18 [77s] threads: 1, tps: 0.00, reads: 0.00, writes: 0.00,
response time: 0.00ms (95%), errors: 0.00, reconnects: 0.00

19 [78s] threads: 1, tps: 0.00, reads: 0.00, writes: 0.00,
response time: 0.00ms (95%), errors: 0.00, reconnects: 0.00

20 [79s] threads: 1, tps: 0.00, reads: 0.00, writes: 0.00,
response time: 0.00ms (95%), errors: 0.00, reconnects: 0.00

21 [80s] threads: 1, tps: 0.00, reads: 0.00, writes: 0.00,
response time: 0.00ms (95%), errors: 0.00, reconnects: 0.00

22 [81s] threads: 1, tps: 0.00, reads: 504.00, writes:
144.00, response time: 75.61ms (95%), errors: 0.00, recon-
nects: 0.00

23 [82s] threads: 1, tps: 0.00, reads: 602.01, writes:
172.00, response time: 42.03ms (95%), errors: 0.00, recon-
nects: 0.00

24 [83s] threads: 1, tps: 0.00, reads: 559.98, writes:
162.99, response time: 51.58ms (95%), errors: 0.00, recon-
nects: 0.00

25 [84s] threads: 1, tps: 0.00, reads: 504.01, writes:
143.00, response time: 55.62ms (95%), errors: 0.00, recon-
nects: 0.00

35

Severalnines provides automation and management software for database clusters. We
help companies deploy their databases in any environment, and manage all operational
aspects to achieve high-scale availability.

Severalnines’ products are used by developers and administrators of all skills levels
to provide the full ‘deploy, manage, monitor, scale’ database cycle, thus freeing them
from the complexity and learning curves that are typically associated with highly
available database clusters. The company has enabled over 8,000 deployments to date
via its popular ClusterControl solution. Currently counting BT, Orange, Cisco, CNRS,
Technicolour, AVG, Ping Identity and Paytrail as customers. Severalnines is a private
company headquartered in Stockholm, Sweden with offices in Singapore and Tokyo,
Japan. To see who is using Severalnines today visit, http://severalnines.com/customers.

About Severalnines

Deploy Manage Monitor Scale

http://severalnines.com/customers

36

Whitepapers

MySQL Replication Blueprint
The MySQL Replication Blueprint whitepaper includes all aspects
of a Replication topology with the ins and outs of deployment,
setting up replication, monitoring, upgrades, performing backups
and managing high availability using proxies.

Download here

MySQL Replication for High Availability
This tutorial covers information about MySQL Replication,
with information about the latest features introduced in 5.6
and 5.7. There is also a more hands-on, practical section on
how to quickly deploy and manage a replication setup using
ClusterControl.

Download here

Management and Automation of Open
Source Databases
Proprietary databases have been around for decades with a rich
third party ecosystem of management tools. But what about
open source databases? This whitepaper discusses the various
aspects of open source database automation and management
as well as the tools available to efficiently run them.

Download here

Related resources from
Severalnines

http://severalnines.com/whitepapers#download_whitepaper/4681
severalnines.com/whitepapers#download_whitepaper/4654
severalnines.com/whitepapers#download_whitepaper/4506

37
© 2016 Severalnines AB. All rights reserved. Severalnines and the Severalnines logo(s) are
trademarks of Severalnines AB. Other names may be trademarks of their respective owners.

Deploy Manage

Monitor Scale

	Table of Contents
	1. Introduction
	2. Changes between MySQL 5.6 and MySQL 5.7
	2.1. Information schema changes
	2.2. Systemd introduction to RPM-based distros
	2.3. SQL modes
	2.4. Authentication changes
	2.5. Changes in InnoDB
	2.6. Other changes introduced in MySQL 5.7

	3. Overview of test environment
	4. Pre-upgrade testing
	4.1. First step - build a test environment
	4.2. Collect data for regression tests
	4.3. Regression tests using pt-upgrade
	4.4. Regression tests of application
	4.5. Bring back the node into replication

	5. Upgrade
	5.1. Slave upgrade process
	5.2. Switchover process and upgrade of the old master

	6. Graceful upgrade process using ProxySQL
	6.1. Installation of ProxySQL
	6.2. Configuring ProxySQL for graceful switchover with ClusterControl

	About Severalnines
	Related resources from Severalnines

