
1

Databases
in Online (Social) Gaming
Designing a scalable data infrastructure

Contributed by Joshua Butcher

2

3

 Table of Contents
1. Introduction 4

2. Business and Technical Challenges 5

3. Data Modeling and Sharding 6
 3.1. Game Accounts (Legally Liable) 7
 3.2. User Profiles (Legally Liable) 7
 3.3. Friends Connections 8
 3.4. Messaging (Ingame) (Legally Liable) 9
 3.5. Billing (Legally Liable) 9
 3.6. Entitlements 10
 3.7. Sessions 10
 3.8. Inventory 10
 3.9. Leaderboards 11
 3.10. Achievements/Trophies 11

4. Database recommendation 12
 4.1. Replication limitations 12

5. About Joshua Butcher 13

6. About Severalnines 14

7. Related resources from Severalnines 15

4

Massively Multiplayer Online Games (MMOG) are multiplayer video games capable of
supporting thousands of players simultaneously. They are played on the Internet and
players connect via personal computers, game consoles or even smart phones. The
game allows players from around the world to interact, cooperate and compete with
each other on a large scale.

With the arrival of social network platforms, the industry has seen an explosion in casual
gaming, called social gaming. MMOGs have eff ectively moved from the hard-core
gamer community to the mainstream. For instance, Happy Farm has 228 million active
users and 23 million daily users, mostly in Asia. World of Warcraft has over 11 million
monthly subscribers worldwide.

Caprica, the prequel to the hugely popular and cult-like TV series Battle Star Galactica
explores the future of online gaming and its potential. What seems like fi ction however
is not that far away from today’s gaming reality. Sony’s Playstation Home is a virtual
world where users evolve in an elaborate online world with millions of people from
across the globe. Users have their own avatar, their own apartments that they can
furnish by purchasing virtual furniture. They go to the cinema to watch the latest movies
from the “real” world – within Playstation Home. It seems that we are only one step
away from Caprica’s parallel virtual worlds and consciousness-gaining robots.

In today’s online gaming world, powerful database systems are needed however to
power all this virtual activity.

MMOGs host a large number of players and all these players can interact with each
other at any given time. Because of scale, a game universe can ‘be sharded’ in several
ways. One way may be where each shard is a smaller universe deployed on a server.
Another way is to have the shard hold a certain number of simultaneous players on a
complete universe or playing fi eld. Other games might feature a single universe, which
is divided and placed on diff erent servers. Players who log into a particular server will
be in one part of the universe; they will need to switch servers to go to another part of
the game universe.

MMOGs are data-driven applications, and databases used in these applications have to
satisfy stringent requirements in terms of performance, availability and scalability.

This paper discusses the importance of databases for the gaming industry, what its
requirements are in terms of database technology as well as a discussion on why
MySQL is or should be the database of choice for anyone wanting to develop online
social games that are reliable and stable in all their aspects.

In addition, the paper also discusses the diff erent types of data that need to be stored
by a social MMOG with recommendations on how to handle these.

 Introduction

5

Social gaming has exploded in the last few years, and there are several possible
explanations to this:

• Easy to learn and play
• Games adopted/played by the mainstream, rather than a hardcore gamer

community
• Viral social networks make a game easily promoted across audiences
• Take advantage of the social graph for a shared, fun experience with real friends
• Use of social connections and communications APIs to make the game seem

more compelling
• Audience: kids are now the biggest consumers of games, be it offl ine or online.

They play on their portable devices (Nintendo DS / mobile phones or their
parents’ iPads & tablets …). They then grow into adult gamers who continue
playing; what changes are the types of games they play, but the community
keeps on growing.

Building an infrastructure to handle a social MMOG is challenging, and includes:
• On-demand scalability and elasticity: It is hard to predict the success of a new

game, and a successful game can attract millions of users.
• High Availability: players are from all over the world, playing at any time of

the day. Therefore, the system has to function 24*7. The data also needs to be
distributed worldwide.

• Predictable latency: avoiding database lag spikes that introduce ‘item lag’.
• Manageability: A COTS server typically might handle about 10,000 players. This

means 100 servers for each million users.
• Cost: Online gaming is a competitive industry, with everything from free

games to monthly subscriptions of $15 per player. Effi cient operations are an
important business goal. This is now also moving to Freemium: the games are
free, but elements of the game (e.g., equipment for a character etc that can be
purchased to increase / enhance the gaming experience).

Web driven, social game companies also have to deal with a diversity of data along
with simultaneous access. The company may have hundreds of games and titles, which
presents an interesting data modeling challenge to the game developer. Despite the
high scale of users, a devops team would want to run as few databases as possible.

 Business and Technical
Challenges

6

MMOGs have very interesting usage/storage patterns. The database server will go
through rather long periods of being idle followed by sudden jumps in concurrent
reads and writes. Why? Because the MMOG server tends to cache user data into its
own memory bank, and will then batch-write the data back to the database server like a
cron job would, every X minutes. So the database server will sit idle for a while and see
sudden surges in activity.

For a massive game, the database layer will need to address the following requirements:
• Up to 30,000 tps per million concurrent users
• Scale from a few thousand to 2-3 millions concurrent users
• High availability
• Synchronous replication for session data
• No data loss for non-session/leader related data
• Log archival (keeping logs) for legally liable data for up to 7 years.
• Sharded data for extreme speed where needed
• Predictable latencies for a smooth gameplay experience

Criteria for data management will vary for diff erent types of data stored for diff erent
functions.

No data loss is essential for legal compliance when it comes to:
• Billing
• Inventory
• Character Entitlements
• Account Information

No data loss is essential for professional reputation when it comes to:
• Trophy data
• Messaging

Speed is essential for:
• Session data
• Character Data
• Inventory
• Leaderboards

Data Integrity is optional for:
• Sessions
• Leaderboards

Leaderboard integrity is optional, because there should be persistent data that can be
used to rebuild the leaderboard, should it be lost.

Game developers also tend to want to store the data in the DB as a JSON or some
other type of serialized C/C++ object. This is to have the application read it in as one
BLOB and not have to convert DB fi elds into C/C++/Java fi elds. This is a practice
that has to be discouraged. For instance, the game developer might need to use the
database server to query on specifi c parts of data inside the JSON/BLOB.

 Data Modeling and Sharding

7

Another thing to keep in mind is that an MMOG is a world that companies want to
bill for over and over again. This means it’s an actual world, and everything inside the
world is “real” to the user. This means the game company can never lose any of it.

The following sections are a recommendation on how to break a schema down with
each portion stored in its own master/slave replication cluster. A typical replication
setup is one master and a minimum of two slaves in each data center. The redundancy
allows for a devops person to take one slave offl ine for maintenance, backups, creation
of new masters/slaves, etc. while still having a slave serving live traffi c.

 3.1. Game Accounts (Legally Liable)
NOTE: The company is legally liable for this data.

For instance, if there are children playing its games who are under 13 years of age,
the company needs to be aware of COPPA1 laws and what other users are saying to
under-13 year olds on its platform.

Game accounts are not user profi les. This is very important these days. A single game
account can have multiple game profi les associated to it.

This data is typically shared by a web site and allows the user to manage their account,
as well as the game itself. It would do well to have a REST service sitting in front of it.

Account information is going to be some of the smallest and least accessed data. Once
the game has authenticated the player, it tends to act on the user profi le(s) inside the
game server’s memory. Most MMOG engineers like to use the DB to hold data until it is
read into memory. Once it is in the game server’s memory, a good portion of that data
will stay there until it is fl ushed back to the server for a new persistent state only. Game
server engineers will try to avoid going back to the database.

The replication latency across data centers is fi ne, because users should be connected
to only one data center at any one time and access services from that data center -
unless there is a failure. Any updates to a master server should be available as quickly
as possible to its local read slaves however.

A typical hardware confi guration might look as follows:

Master: 16G RAM, 4 Disk RAID-10

Slave: 3x16G of RAM, 4 Disk RAID-10

 3.2. User Profi les (Legally Liable)
NOTE: The company is legally liable for this data.

A user profi le is a character created in an MMOG. These days, MMOGs will let one
game account have 5+ characters.

¹ Children’s Online Privacy Protection Act (COPPA) is a US federal law. It applies to the online collection of personal
information by persons or entities under US jurisdiction from children under 13 years of age. It details what a
website operator must include in a privacy policy, when and how to seek verifi able consent from a parent, and what
responsibilities an operator has to protect children’s privacy and safety online.

8

This data is typically shared by a web site that allows the user to manage their user
profi les, as well as the game itself. It would do well to have a REST service sitting in
front of it.

This is going to be some of the smallest and least accessed data. Once the game
has authenticated the player, it will act on your user profi le(s). As with the account
data, once the game server has read this information into memory, it will probably be
accessed there exclusively until the game server fl ushes a new copy back to the DB for
a new persistent state. The user profi le might also include character information, which
includes the player’s items and assigned skills. This is managed directly in memory to
guarantee real-time operations (e.g. a player has killed a creature and gained some
status, and the nearest 100 players need to fi nd out about it ASAP)

Additionally, just as for account information, the replication latency across data centers
is fi ne since users are only connected to one data center at any one time.

This data will usually be cached by the MMOG server on a game shard. It will not be
read very often once it is loaded. The game server will checkpoint its cached state of
the updated user profi le data typically every X minutes. This is fi ne as long as the game
server shard doesn’t crash. Caching is great as it takes away some of the load on the
database server. However, the cache is lost in the case of a crash of the game server.
Losing a cache means potential loss of updates to the profi le.

A typical hardware confi guration might look as follows:

Master: 16G RAM, 4 Disk RAID-10

Slave: 3x16G of RAM 4 Disk RAID-10

 3.3. Friends Connections
This data is shared by the game’s website. For example, in Ultima Online, you can
access your in-game character information from the web site, and in some cases modify
it. It is also a way for someone to say “Hey, look at my character” to friends and on
social websites by linking to a character webpage, without having to make everyone
go into the game to see the avatar/character. It would do well to have a REST service
sitting in front of it.

This is going to be some of the smallest and least accessed data. Once the game has
authenticated the player, it will act on the user profi le(s) as described above in section
3.2. This information is likely to be cached by the game server itself.

Just as for account and user profi le information, the replication latency across data
centers is fi ne since users are only connected to one data center at any one time.

It might be a good idea to limit the number of friends on a user profi le, so as to more
easily predict how this data should scale. This data should be readily available to read
as quickly as possible from the DB. This data can be cached by the local game server,
although it is better to use a caching layer like Memcached or Redis.

A typical hardware confi guration might look as follows:

Master: 16G RAM, 6 Disk RAID-10

Slave: 3x16G of RAM 6 Disk RAID-10

9

 3.4. Messaging (Ingame) (Legally Liable)
The company is legally liable for messaging data, e.g., to know what other users are
saying to under-13 year olds on the platform.

Players can send messages to each other, but do not have to be online simultaneously
in order to socialize. They can leave automated messages for each other in order to
keep the game going.

This data is shared by a web site that allows the user to view and manage their friends,
as well as the game itself. The company and game moderators will look for abusive
usage patterns in messaging, and may get access to this information from an intranet,
or a secure webpage. Moderators may be working from home. It would do well to have
a REST service sitting in front of it.

Just as for account and user profi le information, the replication latency across data
centers is OK since users are only connected to one data center at any one time.
However, messaging data should be available as quickly as possible to its local read
slaves. Otherwise, a page reload might see messages disappear if the previous page
loaded its data from an up-to-date master, but the reload actually reads the data from a
slave that has not yet received the update.

The message data will grow and the life of a message could be limited to 30 days for
example, or when a person’s account has been deemed inactive for 6 months. Message
usage patterns will vary, some games use a lot of messaging while others make
casual, light use of this. In some cases, the game developer may want to use caching.
Memcached is a good recommendation here.

A typical hardware confi guration will have a more powerful master server and more
disks in order to handle the high insert load:

Master: 32G RAM, 6 Disk RAID-10

Slave: 3x16G of RAM 6 Disk RAID-10

 3.5. Billing (Legally Liable)
When deciding to bill, the game developer has to decide whether or not to store credit
cards, or sensitive personal information that could be used to hack the credit card info
for a user. If the company is storing credit card data, it must be fully PCI compliant. If
not, then the database needs to store only minimal information for entitlements.

This information does not need to be shared with the game server, and will be one of
the least accessed pieces of data.

This data needs to be absolutely 100% ACID, and available. It can be placed on a single
powerful machine acting as a master, with a replication slave solely as a backup. This
means that all reads and writes only happen on the master.

A recommended hardware confi guration might look as follows:

Master (Reads/Writes): 16G RAM, 8 Disk RAID-10

Slave (Backup Only): 1x16G of RAM 4 Disk RAID-10

10

 3.6. Entitlements
Entitlements are what rights/products the game account has access to.

This determines whether or not a user has access to a particular game. When a credit
card does not auto-bill for example, the user’s entitlements are disabled, not the user’s
account.

This data is typically shared by a web site that allows the user to see their entitlements,
as well as the game itself. The game developer may allow the user to view and/or
modify their entitlements on a secure webpage, whereas the game will also consume
the information so it knows what users have access to. It would do well to have a REST
service sitting in front of it.

This is going to be some of the smallest and least accessed data. Entitlements are
typically read from the database by the game server at login only, so the game server
can know what a user has access to.

The replication latency across data centers is fi ne since users are only connected to one
data center at any one time.

This product tends to live on the User Accounts database hardware.

 3.7. Sessions
Sessions are one of the most highly accessed types of data in the system. It is also the
most volatile. User sessions can be reconstituted even if the users were on a game
server that crashed.

Session objects are a very good fi t for a geo-replicated main memory database. This
will provide worldwide access to the data, and data can be served at a very high
transaction volume.

A recommended hardware confi guration might look as follows:

Multi-Masters: Up to 20 x 32G RAM, 6 Disk RAID-10

 3.8. Inventory
Inventory data is as precious as billing data for the user. This describes how the player
interacts with the gaming universe. Inventory data are virtual belongings that uniquely
present a player’s digital lifestyle in a game.

Game developers tend to cache this in the server’s memory bank. The disks need to be
generous in speed and size, because a user’s inventory can grow quite large, and the
checkpoint every X minutes for multiple users can be a strain on the disk IO.

This data is typically going to be cached by the MMOG server on a game shard. It will
not be read very often once it is loaded. The game server will checkpoint its cached
state of the inventory data every X minutes. This is fi ne as long as the game server
shard doesn’t crash.

The replication latency across data centers is fi ne since users are only connected to one

11

data center at any one time. Updates to inventory data should however be propagated
as quickly as possible to its local read slaves

A recommended hardware confi guration might look as follows:

Master: 16G RAM, 6 Disk RAID-10

Slave: 3x16G of RAM 6 Disk RAID-10

 3.9. Leaderboards
Leader boards at the end of the day are volatile. People want to know how they are
doing against someone else, but leader boards change all the time and as soon as one
is published, it is no longer valid. These can be reconstituted if they crash.

For speed and performance’s sake, keeping this data in memory is handy, because
leaderboards are often real time or near real time. Players today want to know how
they are doing against one another. Keeping the data in memory will allow the fastest
possible way to continuously recalculate new data. Using the same architecture (and
most likely the same platform deployment as sessions) will do nicely here.

 3.10 Achievements/Trophies
These are as precious to a player as inventory is. This tells the rest of the world how
awesome they are as a player. This is the second most important reason as to why they
are accessing the game.

Luckily however, game developers tend to cache this in the server’s memory bank. The
disks need to be generous in speed and size however, because a user’s inventory can
grow quite large and the checkpoint every X minutes for multiple users can be a strain
on the disk IO.

The replication latency across data centers is fi ne since users are only connected to one
data center at any one time.

A recommended hardware confi guration might look as follows:

Master: 16G RAM, 6 Disk RAID-10

Slave: 3x16G of RAM 6 Disk RAID-10

12

With so many NoSQL databases now available, one might wonder why MySQL would
be a good database choice for the gaming industry.

In fact, MySQL is extremely general purpose and has proven itself in large-scale
infrastructures.

The NoSQL movement for instance was started with niche in mind, and although there
are a range of products available, they all address diff erent needs.

Having a general purpose product such as MySQL helps reduce the number of diff erent
products used in an infrastructure. Reusing the same components simplifi es the
architecture and makes it more maintainable in the long run.

Storing information that the company is legally liable for puts a strong emphasis on
reliability and data integrity. NoSQL is great for performance, but is not as mature and
stable as MySQL. For instance, the game developer would want to use a well-proven
transactional database for billing data.

In terms of the vast array of NoSQL databases available, it is likely that the industry
will rally around one or two database products that are well supported by professional
support organizations. MongoDB is gaining a lot of traction and looks very promising,
although it is unclear how easy it is for a devops team to manage a scalable, clustered
database architecture.

 4.1. Replication limitations
It is possible to make MySQL redundant and scalable, but it is not an out of the box
functionality as for some of the NoSQL databases (with the exception of MySQL
Cluster). For instance, MySQL replication is simple to set up and used by thousands of
websites. However, it is somewhat fragile2. Fail-over is not automatic and it is possible
for slave servers to end up with diff erent data from the master. Fortunately, there are
products available that help address this. E.g. the Severalnines Replication Confi gurator
can automatically set up a Replication cluster, with support for automatic fail-over
and re-synchronization. MySQL Replication is asynchronous and works well when
data needs to be distributed in diff erent data centers to enable worldwide access with
reasonable performance.

It might also be wise not to have too many slaves connected to a master, as it drags
down the IO of the master. With the above sharding strategy, we divided a schema
into product categories and each category could be placed on a dedicated replication
cluster. This works better than the generally accepted way of sharding the entire schema
by user ranges.

² See http://www.severalnines.com/resources/clustercontrol™-mysql-replication-tutorial to read more about MySQL
Replication limitations

 Database recommendation

13

Before sinking his teeth into large scale databases for the gaming industry, Joshua
Cannon Butcher started technical life programming on personal projects at the age of
16 with self-taught Basic, Pascal, Assembler and C++. He then went onto professional
end user support for organizations like Coca Cola, owned a consulting business off ering
services ranging from support to systems, network, web and desktop application
architecture. He has written commercial backup applications for Windows, written
indie role playing games, but most importantly, gained extensive experience designing
large scale database systems for high volume online marketing, online social gaming
platforms and high concurrency online games.

LinkedIn Profi le: http://www.linkedin.com/in/drsql

 About Joshua Butcher

14

Severalnines provides automation and management software for database clusters. We
help companies deploy their databases in any environment, and manage all operational
aspects to achieve high-scale availability.

Severalnines’ products are used by developers and administrators of all skills levels
to provide the full ‘deploy, manage, monitor, scale’ database cycle, thus freeing them
from the complexity and learning curves that are typically associated with highly
available database clusters. The company has enabled over 8,000 deployments to date
via its popular ClusterControl solution. Currently counting BT, Orange, Cisco, CNRS,
Technicolour, AVG, Ping Identity and Paytrail as customers. Severalnines is a private
company headquartered in Stockholm, Sweden with offi ces in Singapore and Tokyo,
Japan. To see who is using Severalnines today visit, http://severalnines.com/customers.

 About Severalnines

Deploy Manage Monitor Scale

15

Whitepapers

MySQL Replication Blueprint
The MySQL Replication Blueprint whitepaper includes all aspects
of a Replication topology with the ins and outs of deployment,
setting up replication, monitoring, upgrades, performing backups
and managing high availability using proxies.

Download here

MySQL Replication for High Availability
This tutorial covers information about MySQL Replication,
with information about the latest features introduced in 5.6
and 5.7. There is also a more hands-on, practical section on
how to quickly deploy and manage a replication setup using
ClusterControl.

Download here

Management and Automation of Open
Source Databases
Proprietary databases have been around for decades with a rich
third party ecosystem of management tools. But what about
open source databases? This whitepaper discusses the various
aspects of open source database automation and management
as well as the tools available to effi ciently run them.

Download here

 Related resources from
Severalnines

http://severalnines.com/whitepapers#download_whitepaper/4681
http://severalnines.com/whitepapers#download_whitepaper/4654
http://severalnines.com/whitepapers#download_whitepaper/4506

16
© 2016 Severalnines AB. All rights reserved. Severalnines and the Severalnines logo(s) are
trademarks of Severalnines AB. Other names may be trademarks of their respective owners.

Deploy Manage

Monitor Scale

	Introduction
	Business and Technical Challenges
	Data Modeling and Sharding
	Game Accounts (Legally Liable)
	User Profiles (Legally Liable)
	Friends Connections
	Messaging (Ingame) (Legally Liable)
	Billing (Legally Liable)
	Entitlements
	Sessions
	Inventory
	Leaderboards
	Achievements/Trophies

	Database recommendation
	Replication limitations

	About Joshua Butcher
	About Severalnines
	Related resources from Severalnines

