nin3s

Database Sharding
with MySQL Fabric

severalnings

¥ [able of Contents

1. Why Sharding?

2. How does Sharding work?
2.1. Functional sharding
2.2. Expression-based sharding
2.3. Metadata-based sharding

3. Sharding solutions

3.1. Vitess
3.1.1. Tablets
3.1.2. How sharding works in Vitess?
3.1.3. Migration into Vitess cluster

3.2. MySQL Fabric
3.2.1. High availability in MySQL Fabric
3.2.2. Scaling out with MySQL Fabric
3.2.3. Query routing in MySQL Fabric

4. Migrating into sharded environment with MySQL Fabric
4.1. Environment overview
4.2. Setting up MySQL Fabric
4.2.1. Installation
4.2.2. Initial setup
4.2.3. Setting up global replication group
4.2.4. Define shard mappings
4.2.5. Creating shards
4.3. Setting up MySQL Router
4.3.1. Installation of MySQL Router
4.3.2. Configuring MySQL Router
4.4. Configuring ProxySQL for sharding
4.4.1. Configuring hostgroups
4.4.2. Configuring query rules
4.4.3. Testing of query rules
4.5. Cutover process
4.5.1. Preparations
4.5.2. Cutover
4.5.3. Cleanup
4.6. Typical operations in MySQL Fabric sharded environment
4.6.1. Add node to shard
4.6.2. Remove node from a shard
4.6.3. Promote a secondary node in a shard
4.6.4. Move shard to a different high availability group
4.6.5. Splitting the shard
4.7. High availability aspect
4.8. Summary

5. About Severalnines

6. Related Resources from Severalnines

nins

W \Why Sharding?

Database systems with large data sets or high throughput applications can challenge
the capacity of a single database server. High query rates can exhaust CPU capacity, I/0
resources, RAM or even network bandwidth.

Horizontal scaling is often the only way to scale out your infrastructure. You can
upgrade to more powerful hardware, but there is a limit on how much load a single
host can handle. You may be able to purchase the most expensive and the fastest CPU
or storage on the market, but it still may not be enough to handle your workload. The
only feasible way to scale beyond the constraints of a single host is to utilize multiple
hosts working together as a part of a cluster or connected using replication.

Horizontal scaling has its limits too, though. When it comes to scaling reads, it is very
efficient - just add a node and you can utilize additional processing power. With writes,
things are completely different. Consider a MySQL replication setup. Historically, MySQL
replication used a single thread to process writes - in a multi-user, highly concurrent
environment, this was a serious limitation. This has changed recently. In MySQL 5.6,
multiple schemas could be replicated in parallel. In MySQL 5.7, after addition of a
"logical clock’ scheduler, it became possible for a single-schema workload to benefit
from the parallelization of multi-threaded replication. Galera Cluster for MySQL also
allows for multi-threaded replication by utilizing multiple workers to apply writesets.
Still, even with those enhancements, you can get just some incremental improvement in
the write throughput - it is not the solution to the problem.

One solution would be to split our data across multiple servers using some kind of a
pattern and, in that way, to split writes across multiple MySQL hosts. This is sharding.

nins

B How does Sharding work?

The idea is really simple - if my database server cannot handle the amount of writes,
let’s split the data somehow and store one part, generating part of the write traffic, on
one database host and the other part on another host. In that way, each host will have
to handle half of the writes which should be well within their hardware limits. We can
further split the data and distribute it on more servers if our write workload grows.

myDB

|
[[|]

Shard A Shard B Shard C Shard D

myDB

25M 25M 25M 25M

The actual implementation is more complex as there are numerous issues you need to
solve before you can implement sharding. How will you split the data? How will you find
a correct shard for a query? What you are going to do when one of your shards grows
in size and traffic, and outgrows the hardware? How will you scale your environment -
preshard it or maybe add new shards when the need arises?

The first, very important question that you need to answer is - how are you going to
split your data?

2.1. Functional sharding

Let's imagine your application is built out of multiple modules, or microservices if

we want to be fashionable. Assume it's a large online store with a backend of several
warehouses. Such site may contain a module to handle warehouse logistics - check
the availability of an item, track shipment from a warehouse to a customer. Another
module may be an online store - a website with a presentation of available goods. Yet
another module would be a transaction module - collect and store credit cards, handle
transaction processing and so on. Maybe the online store has a large, buzzing forum
where customers share opinions on goods, discuss support issues etc. You may start

nins

your voyage in the world of shards by using a separate database per module. This will
allow you to gain some breathing space and plan for next steps. On the other hand, the
next step may not be necessary at all if each shard can comfortably handle its workload.
Of course, there are downsides of such setup - you cannot easily query data across
modules (shards) - you have to execute separate queries to separate databases and
then combine together resultsets. Unfortunately, this is a typical limitation of a sharded
system and there’s not much you can do about it. Recently, with MySQL 5.7, multi-
source replication has become possible - this may become a method to aggregate data
from multiple shards and query it.

Multi Source Replication

Master 1 Master 2 Master 3

Multi Source
Slave

The issue you'd have to solve when utilizing this method is, well, the very same issue
which forced you to use sharding - limited write capacity. In short, if you aggregate all
shards into a single slave, it is highly improbable the slave will keep up with replication.
On the other hand, maybe it is enough to aggregate only a couple of tables from each
shard and query them on a single slave. Another problem with the functional sharding
is that, at the end, some of the modules in your application may still outgrow your
hardware - maybe you can further split these modules but if that is not possible, then
you need to consider a different sharding strategy.

2.2. Expression-based sharding

Another method of splitting the data across shards would be to use some kind of
expression or function/algorithm to help us decide where the data should be located.
Let's imagine you have a database with one large table that is commonly accessed and
written to. For example, assume a social media site and our largest table contains data
about users and their activities. This table uses some kind of id column as primary key

- we need to split it somehow and one of the ways would be to apply an expression to
the ID value. A very popular choice is to use a modulo function - if we want to generate

nin2s

128 shards, we can just apply expression of ‘id % 128" and this would calculate the shard
number where a given row should be stored. Another method include making use of a
date range, e.g., all user activity in year 2015 is stored in one database, activity in year
2016 is stored in a separate database). Yet another one would be to distribute data
based on a list of attributes, e.g., all users from a specific country end up in the same
shard.

This approach has both pros and cons. It's really nice that you can easily locate the
shard for any given row - no need to do any complex operations or queries, just
evaluate the expression used for sharding using a value of a given ID (i.e. calculate

the modulo and see which shard the row belongs to) and you are all set. This works
both ways - not only when you retrieve the data but also when you store it. The main
limitation is that, once you deploy your shards, it may not be easy to add more of them
- in our example we could add more shards by increasing the value in our modulo
expression, but it would seriously affect calculations on where data is stored currently.
The only feasible way is to completely redistribute data across shards, but this would be
a time-consuming process.

2.3. Metadata-based sharding

As we discussed above, both functional sharding and expression-based sharding have
limitations when it comes to scaling out in terms of number of shards. There's still one
more method which gives you more flexibility in managing shards - a metadata-based
sharding. The idea is very simple - instead of using some kind of hard-coded algorithm,
let's just write down where a given row is located: row of id=1 - shard 1, row with id=2 -
shard 5. Finally, let’s build a database to keep this metadata.

This approach has a huge benefit - you can store any row in any shard. You can also
easily add new shards to the mix - just set them up and start to store data on them.
You can also easily migrate data between shards - nothing stops you from copying data
between shards and then making an adjustment in the metadata. In reality it's more
complex than it sounds as you have to make sure you move all the data so some kind
of data locking is required. For example, to copy data between shards, you'd have to
do an initial copy of the data across shards, lock access to the part of the data which is
migrated, make a final sync and, finally, change an entry in the metadata database and
unlock the data.

Another issue is the metadata itself - if there's no algorithm to locate a shard for a given
row, you have to query the metadata database and check where you should look for a
particular row. If the metadata database become unavailable, your whole application
won't be able to operate. This makes the availability of the metadata crucial - it has

to be rock-solid so your application can reach it and check where the data is. High
availability is a one challenge. Scaling the metadata database is another one - again,
scaling reads can be done by e.g., adding slaves to a replication setup. If the write
capacity is limited, you may have to shard the metadata database as well.

nin3s

B Sharding solutions

We've discussed several approaches to sharding. The most flexible one, sharding using
metadata, is also the most complex one to implement. You need to design the meta-
database, and build high availability not only for your application data but also for the
metadata. On top of that, you need to design your application so it will be aware of
the complex database infrastructure beneath - it has to query metadata first and then
it has to be directed to a correct shard to read or write data. You will also have to build
a set of tools to manage and maintain the metadata. Migrating data requires caution
so it has to be done carefully. You also have to make sure that any operations on the
production databases are mirrored in the metadata - have you taken a slave out of
rotation? This should be reflected in the metadata. Have you added a new slave to a
shard? You have to modify the metadata and add that host. As you can imagine, lot
of time and effort has to be put into developing and maintaining scripts and tools to
manage such setup. It begs the question - is there some external solution to design,
deploy and manage a sharded environment? In this chapter, we will cover a couple of
solutions which are available on the market and which may help you to build a scalable,
sharded infrastructure.

3.1. Vitess

P
Vitcss

Vitess is a tool built to help manage sharded environments. It was developed to help
scale out databases at Youtube. In short, it is a solution based on metadata - by default,
it uses range sharding but it is also possible to implement a custom sharding schema.
Topology data is stored and maintained in a service like Zookeeper or etcd. Application
access data using a lightweight proxy, named ‘vtgate’ in Vitess' nomenclature. Vtgate
connects to the metadata store and checks the data distribution - this allows it to route
queries to correct shards - ‘tablets’.

nins

admin

; commands ;

runtime
application

Topology
(metadata
store)

GUI

victld

interact with
topology

3.1.1. Tablets

A tablet is a pair of vttablet and mysqld processes - basically, it's a MySQL installation.
A tablet can have couple of roles - just like a MySQL host. A tablet can be a master

- which means that that particular MySQL acts as a master for its particular shard. A
replica is another role - such tablets act more or less as slaves. They serve traffic and
they can be promoted to a master role at any time. There are more roles than that,
though. Rdonly is a tablet which acts as a slave but it cannot be promoted to a master.
Such role fits great with tablets which are intended to handle some intense, heavy

duty work. It can be used as a backup server, or dedicated for some CPU-intensive
processes like analytical queries. A backup tablet is a tablet which has replication
stopped and it's “frozen” data-wise. Most likely a consistent backup is being taken from
it and it will resume its replication and return to its original type as soon as the backup
operation completes. Another type is restore - it means that the tablet has been started
without any data and it is currently in the process of having its data restored. Once it
completes, the tablet will resume replication and will become either rdonly or replica.
Finally, a worker - this is a tablet which has been reserved by one of Vitess background
processes. Once this process completes, the tablet will return to its original state.

3.1.2. How sharding works in Vitess?

To understand how sharding works in Vitess, we need to introduce some new
terminology. We've already mentioned tablets, which may have multiple roles. Usually
you have a master and several replicas - for high availability. This set of tablets form a
shard. A shard, on the other hand, is a partition of a keyspace. Keyspace is a collection
of tables, more or less similar to MySQL's schema. You can have one or more keyspaces
- just like schemas in MySQL. If you do not use shards, a keyspace will be located on a
single set of tablets - a master and several slaves.

Vitess supports range sharding - the keyspace is divided into two or more partitions,
each partition covering a range of data. To find ranges, Vitess has to use a column of
some kind to calculate them - currently supported data types are BIGINT UNSIGNED
and VARBINARY. This works very well with id's which usually use unsigned integer
format.

nin3s

When the first two shards are added in Vitess, relevant ranges are calculated so that
data is split more or less in half - we will not go into details of how this is implemented.
What's important is that you'll end up with two ranges - let’s say id's 0-500 and 501 -
maximum value. Each of those ranges can be split in half to create another two shards.
You may see a potential limitation here - it is not possible to group different, not
adjacent ranges together. Therefore sometimes, you'll end up with more shards that
you actually need. This should not be a problem.

Day-to-day operations may require changes in shard structure - most often you will
end up having split shards because they would outgrow the hardware performance-
wise, but sometimes the workload may reduce and you may want to merge some of the
shards. Of course, Vitess supports those operations within the limits of the range-based
sharding - you can combine adjacent shards, you can split a shard into two or more
parts.

While range-based sharding is the default option in Vitess, it is also possible to
implement a custom sharding schema using Vitess. It is more complex though and
requires additional logic implemented on the application side. In short, when trying

to implement custom sharding in Vitess, you should treat it more like a set of MySQL
hosts. What you basically have to do is to create shards, name them however you want
and then use one of the keyspaces (which is, at the minimum, a set of tablets - master
and couple replicas) as a lookup keyspace in which you'll store data about where a
given row is located. So, at the end you will end up with at least two keyspaces. One
which contain application data and a lookup keyspace (which also can be sharded,
using Vitess' range sharding). The lookup keyspace would be queried by the application
to retrieve the shard name where a given row is located - then the application can
direct queries to the correct shard.

Unfortunately, using custom sharding makes impossible to benefit from the additional
tooling Vitess provides - there's no option for automated resharding nor there is a
support for custom sharding in Vitess’ API.

3.1.3. Migration into Vitess cluster

Once you deploy a Vitess cluster, you need to migrate into it from your production
MySQL infrastructure. Unfortunately, this is tricky. Obviously, you could dump and then
reload the data but such process takes a long time and requires downtime - which
makes it not suitable for majority of cases.

The only feasible method of migrating into a Vitess cluster would be to setup replication
between your production system and new Vitess cluster. Unfortunately, such operation
may not be the easiest, especially if your current environment is a complex one.
Additional issue may be the fact that, to connect to Vitess, you may need to modify
your application to use different libraries than what you already using to connect to
MySQL. There's work in progress to integrate libraries with several database drivers - Go
(database/sql) and Python (DB API) should work fine, Java (JDBC) and PHP (PDO) are
work in progress, but if your application uses a different language, it may not be that
easy to migrate into Vitess.

3.2. MySQL Fabric

In 2014, Oracle introduced a new set of tools for MySQL, called "MySQL Fabric”.
Historically, there was no official tool which would allow users to build highly available
topologies, including sharded setups. The idea behind Fabric is to provide an “official”

nin3s

10

tooling for building such setups. It provides a framework and tools to manage groups
of highly-available MySQL instances. It supports implementation of HA setups and
scaling through sharding.

—

Qﬁ{- @ python FAIREF <, ']

SQL Queries

Qﬁ Global | Group
& A’ ' ~
Global Data Shard 1 Shard 2

AR RECIREENEE

Primary Secondary Primary Secondary Primary Secondary
| : | Coordination & Control

— =
= P
= == = = =
MySQlL Fabric s s s] s s iz J s i e s
Controller Extra Read Replicas Extra Read Replicas
. J . ~

3.2.1. High availability in MySQL Fabric

MySQL Fabric uses a concept of high-availability groups - a group contains two or more
MySQL servers connected using replication (actually, you can have just a single host in

a group but, obviously, it won't be highly-available). Each server may have several roles
- it can be either a “primary” - that is, a master for a given high-availability group; it can
be also a “secondary”, when it's acting as a slave or “spare”. A host can also be “offline”
or "faulty”, if something is not right with it or its replication setup.

MySQL Fabric can take care of the fault detection within a group, to make sure that your
application will be able to query it. If the primary host fails, one of secondary hosts will
take over its role and start serving writes.

3.2.2. Scaling out with MySQL Fabric

MySQL Fabric not only gives you the ability to maintain availability of your data - it also
supports scaling out through sharding. The basic idea is - if we can configure a few
servers into a single high-availability group, we can then scale by having more of them.
Then we'd need to implement some kind of shard mapping - we need to decide which
column to use for sharding and which tables should be sharded. Another decision

has to be made on what algorithm should be used to shard your data - MySQL Fabric
supports “hash”, which, as long as there are no hash collisions, should result in even
distribution of rows across shards, and “range”, which works fairly similarly to what we
discussed in Vitess - a user can define ranges of rows handled by a single shard - this
allows for rather fine-grained control of where a particular set of data is located.

Shards are created out of groups of hosts - a group having one or more hosts in
master-slave setup. If you want to deploy four shards, four groups have to be created.
One interesting concept of MySQL Fabric is a “global” group. It also consists of one or
more MySQL hosts. The idea here is that every master in each shard replicates from the
master of “global” group. The global group is a place where all non-sharded tables are
going to be updated. This group is also used when performing schema changes.

ninzs

i

3.2.3. Query routing in MySQL Fabric

One of the challenges with a sharded setup is how to ensure that the application will
be able to connect to the correct shard in order to issue queries. Some tool or module
should have up-to-date state information about the database tier - which hosts are
online, which hosts handle which shard etc. In MySQL Fabric, such data is stored in
Fabric cache, which is then queried by the connector before it routes requests from
the application. The best case scenario is when the application doesn't have to know
anything about the complexity of the sharded infrastructure. Unfortunately, MySQL
Fabric is not there yet - the application has to use MySQL Fabric-related code from
the MySQL Connector and pass the sharding key - it has to pass an integer value or a
hash, and based on that, MySQL Fabric will decide the shard to which the connection
is to be routed to. This is not an ideal solution as your code has to be modified before
your application can connect to the MySQL Fabric setup. The change is made in the
connection properties. Note that you have to modify your application anyway to
connect to the MySQL Fabric connector instead of opening a direct connection to
MySQL.

One particular problem is with range queries - they may affect multiple shards and this
is not possible to do in automated way. If your application needs to run range queries
over the sharding key, your application will have to understand how data is sharded
before such a query can be executed. It is not a particular flaw of MySQL Fabric as this
particular issue is typical in sharded systems in general, but we wanted to make it clear
that MySQL Fabric won't solve it for you.

To avoid some of the problems, MySQL Fabric can work with MySQL Router. This is
another tool from Oracle which is intended to provide routing for highly available
MySQL environments. It also has a “Fabric-integration” mode. When configured to
work with MySQL Fabric, MySQL Router will connect to the Fabric cache, collect data
on the state of the Fabric environment and use this data to route queries accordingly.
Unfortunately, this works only on the “high availability group” level only - you cannot
connect to MySQL Router and let it route your query to a correct shard - you'd have
to expose connections to each group over the MySQL Router using different ports
and then make your application pick one of them to connect to. This may sound
cumbersome, but under some circumstances, it may work really nicely as we hope to
showcase later in this ebook.

nin3s

12

'I'll Migrating into sharded
environment with MySQL
Fabric

In this chapter, we'll walk you through the process of migrating from a master-slave
replication setup to a sharded environment created and maintained by MySQL Fabric.
We will be using MySQL Router to make the transition even easier for your application.

4.1. Environment overview

Our initial environment is a master-slave replication setup running MySQL 5.7. Our
application will be sysbench. We will use four tables, each containing 1 million rows.
Below you can find the exact command that was used to create and populate those
tables.

1 sysbench --test=/root/sysbench/sysbench/tests/db/oltp.
lua --num-threads=2 --max-requests=0 --max-time=0 --mysql-
host=172.30.4.93 --mysql-user=sbtest --mysqgl-password=sbtest
--mysql-port=3306 --oltp-tables-count=4 --report-interval=10
--oltp-skip-trx=off --oltp-table-size=1000000 prepare

For generating traffic, we will use the following flags in sysbench:

1 --oltp-skip-trx=on --oltp-simple-ranges=0 --oltp-sum-rang-
es=0 --oltp-order-ranges=0 --oltp-distinct-ranges=0

Our application will use only primary key-based queries, both selects and DML's. We are
also not going to use transactions. This is a result of limitations of the sharding system.
If you split your table across several shards, you can't really execute range queries. Let's
imagine the following case - you have 1000 rows across two shards, i.e., 500 in each
shard. Let's assume the following query:

1 | SELECT COUNT(*) FROM tabl WHERE id BETWEEN 400 AND 600;

Where should this query be executed? If you run it on the first shard, you'll see the
result of 100 (as it contains id’s 400 - 500). If you run it on the second shard, you'll
again see the result of 100 (as it contains id's 500 - 600). None of those queries return
a valid result (200) - your application has to understand how data is sharded before
range queries would be feasible to execute. In this case, it should execute two queries
on two shards and combine results into one. Similar situation is with transactions - as

nins

long as you execute a transaction within the scope of a single shard, it is perfectly

fine. You cannot run cross-shard transactions, though - therefore, if you want to run a
transaction, you have to be certain that the queries executed within it will be relevant to
a single shard only.

Please also note, we are going to focus on the sharding setup - we won't cover all the
details that are required in a real life environment to make your application sharding-
compatible. For example, one of the issues you'll face when working with shards is that
you cannot use an auto_increment primary key. This is due to the fact that if you split
such a table across a couple of shards, you'll end up with the same id’s generated in
multiple shards due to auto_increment behavior. It is possible to manipulate it using
auto_increment_increment and auto_increment_offset, but it's tricky and error-prone.
The recommended solution is to use some kind of external id generator which will
generate a new id for each insert - making sure there are no conflicts. An example of
such generator may be ‘Snowflake’, created by Twitter. In our example, we will remove
auto_increment from the primary key (PK) column and demo inserts using manually
prepared statements.

The following SQL clears the auto_increment:

1 alter table sbtest.sbtestl modify column id int unsigned NOT
NULL;

2 alter table sbtest.sbtest2 modify column id int unsigned NOT
NULL;

3 alter table sbtest.sbtest3 modify column id int unsigned NOT
NULL;

4 alter table sbtest.sbtest4 modify column id int unsigned NOT
NULL;

As proxy, we use ProxySQL configured to perform read/write split of the traffic between
our master and slave. It will be also used to route our traffic across multiple shards and
it will be useful in making sure our traffic can be moved from the old master to MySQL
Router without any impact on our application. Configuration of the ProxySQL has been
covered in one of our blog posts: http://severalnines.com/blog/how-proxysgl-adds-
failover-and-query-control-your-mysql-replication-setup

We'll remember to make sure that our slave has the read_only variable set to 1.

Once we are done with the ProxySQL setup, we can run our application using the
following command:

1 while true ; do sysbench --test=/root/sysbench/sysbench/
tests/db/oltp.lua --num-threads=2 --max-requests=0 --max-
time=0 --mysql-host=172.30.4.185 --mysql-user=sbtest
--mysql-password=sbtest --mysql-port=6033 --oltp-tables-
count=4 --report-interval=10 --oltp-skip-trx=on --oltp-sim-
ple-ranges=0 --oltp-sum-ranges=0 --oltp-order-ranges=0
--oltp-distinct-ranges=0 --oltp-table-size=1000000 run ;
done

nin3s

14

https://github.com/twitter/snowflake
http://severalnines.com/blog/how-proxysql-adds-failover-and-query-control-your-mysql-replication-setup

4.2. Setting up MySQL Fabric

4.2 1. Installation

To install MySQL Fabric you need to install mysql-utilities package. You can download it
for your OS version from this link:

https://dev.mysgl.com/downloads/utilities/

In our case, system is Ubuntu 14.04 and we had to install one more package for
dependencies - mysql-connector-python. It is available from the following site:

https://dev.mysgl.com/downloads/connector/python/

Installation on our system required:

1 root@ip-172-30-4-185:~# wget http://cdn.mysql.com//Down-
loads/MySQLGUITools/mysql-utilities_1.5.6-1ubuntul4.04 _all.
deb

2 root@ip-172-30-4-185:~# wget http://cdn.mysql.com//Down-
loads/Connector-Python/mysql-connector-python_2.1.3-1ubun-
tuld.04 all.deb

3 root@ip-172-30-4-185:~# dpkg -i mysql-utilities_1.5.6-1ubun-
tuld.04_all.deb mysql-connector-python_2.1.3-1ubuntul4.oe4 _
all.deb

This is all you need to download and install to get started with MySQL Fabric.

4.2.2. Initial setup

MySQL Fabric requires to have an access to some backend MySQL server to store

its configuration and cluster setup. It has to be MySQL 5.6.10 or newer but it's
recommended to have a backend with the same version as the other hosts managed by
MySQL Fabric. We need to create a MySQL user which would be used by MySQL Fabric.

1 mysql> CREATE USER ‘fabric_store’@’%’ IDENTIFIED BY f‘pass’;
2 Query OK, @ rows affected (0.00 sec)

1 mysql> GRANT ALTER, CREATE, CREATE VIEW, DELETE, DROP,
EVENT, INDEX, INSERT, REFERENCES, SELECT, UPDATE ON mysql
fabric.* TO ‘fabric_store’@’%’;

2 Query OK, @ rows affected (0.00 sec)

Couple more will have to be created on the managed MySQL hosts.

1 mysql> CREATE USER €‘fabric_server’@’%’ IDENTIFIED BY ‘pass’;
2 Query OK, @ rows affected (0.06 sec)

nin3s

15

https://dev.mysql.com/downloads/utilities/
https://dev.mysql.com/downloads/connector/python/

1 mysql> GRANT DELETE, PROCESS, RELOAD, REPLICATION CLIENT,
REPLICATION SLAVE, SELECT, SUPER, TRIGGER ON *.* TO ‘fab-
ric_server’@’%’;

2 Query OK, © rows affected, 1 warning (0.00 sec)

1 mysql> GRANT ALTER, CREATE, DELETE, DROP, INSERT, SELECT,
UPDATE ON mysql_fabric.* TO ‘fabric_server’@’%’;
2 Query OK, @ rows affected (0.00 sec)

1 mysql> CREATE USER €‘fabric_backup’@’%’ IDENTIFIED BY ‘pass’;
2 Query OK, @ rows affected (0.02 sec)

1 mysql> GRANT EVENT, EXECUTE, REFERENCES, SELECT, SHOW VIEW,
TRIGGER ON *.* TO ‘fabric_backup’@’%’;
2 Query OK, @ rows affected, 1 warning (0.01 sec)

1 mysql> CREATE USER ‘fabric_restore’@’%’ IDENTIFIED BY
(¢ J .
pass’;

2 Query OK, @ rows affected (0.05 sec)

1 mysql> GRANT ALTER, ALTER ROUTINE, CREATE, CREATE ROUTINE,
CREATE TABLESPACE, CREATE VIEW, DROP, EVENT, INSERT, LOCK
TABLES, REFERENCES, SELECT, SUPER, TRIGGER ON *.* TO ‘fab-
ric_restore’@’%’;

2 Query OK, @ rows affected, 1 warning (0.01 sec)

Next step will require editing Fabric’s configuration file which is located (for Ubuntu
14.04) in /etc/mysql/fabric.cfg. We want to edit [storage] and [servers] section, we also
added password and IP address to [protocol.xmlrpc] and [protocol.mysql] sections.
Below you can find a complete configuration file with all of our changes included.

root@ip-172-30-4-185:~# cat /etc/mysql/fabric.cfg
[DEFAULT]

prefix =

sysconfdir = /etc

logdir = /var/log

[storage]

address = 172.30.4.185:3306

user = fabric_store

10 password = pass

11 database = mysql fabric

12 auth_plugin = mysql native_password
13 connection_timeout = 6

14 connection_attempts = 6

15 connection_delay =1

OVCoONOULSA, WNEER

17 [servers]
18 user = fabric_server

nin3s

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

nin3s

password = pass

backup_user = fabric_backup
backup_password = pass
restore_user = fabric_restore
restore_password = pass
unreachable timeout = 5

[protocol.xmlrpc]

address = 172.30.4.185:32274
threads 5

user = admin

password = pass

disable authentication = no
realm = MySQL Fabric

ssl ca =

ssl cert =

ssl_key =

[protocol.mysql]

address = 172.30.4.185:32275
user = admin

password = pass

disable authentication = no
ssl ca =

ssl cert =

ssl_key =

[executor]
executors = 5

[logging]
level = INFO
url = file:///var/log/fabric.log

[sharding]

mysqldump_program = /usr/bin/mysqldump
mysqlclient_program = /usr/bin/mysql
prune_limit = 10000

[statistics]
prune_time = 3600

[failure_tracking]
notifications = 300
notification clients = 50
notification_interval = 60
failover_interval = ©
detections = 3
detection_interval = 6
detection_timeout = 1

17

69 prune_time = 3600
70

71 [connector]

72 ttl = 1

Next step will be to create any required schemas and tables for the MySQL Fabric
database:

1 root@ip-172-30-4-185:~# mysqlfabric manage setup

2 [INFO] 1470138218.386342 - MainThread - Initializing per-
sister: user (fabric_store), server (localhost:3306), data-
base (mysql_fabric).

3 [INFO] 1470138220.312645 - MainThread - Initial password for
admin/mysql set

4 Password set for admin/mysql from configuration file.

5 [INFO] 1470138220.320492 - MainThread - Password set for ad-
min/mysql from configuration file.

6 [INFO] 1470138220.321065 - MainThread - Initial password for
admin/xmlrpc set

7 Password set for admin/xmlrpc from configuration file.

8 [INFO] 1470138220.327604 - MainThread - Password set for ad-

min/xmlrpc from configuration file.

Once this is done, we can start the MySQL Fabric management service as a daemon:

1 root@ip-172-30-4-185:~# mysqlfabric manage start --daemon

4.2.3. Setting up global replication group

Before we proceed with setting up shards, we need to set up the global group. For
that we prepared two hosts in master-slave setup as we'd like to maintain some level
of availability. We will want the master of our global group to slave off our production
master. We will use MySQL replication to keep our setup under MySQL Fabric up to
date until cutover happens.

Replication requires hosts in the global group to be provisioned in some manner (unless
you still have all binary logs) - you can use mysgldump if you have some free time (or

if your dataset is small). You can also use xtrabackup to provision them. Any method

of provisioning a slave will do. We are going to use xtrabackup to prepare nodes and
then we will setup replication. But before we do that, let's add a replication user on our
production master - we'll use it later to setup the replication:

1 mysql> CREATE USER rpl user@’%’ IDENTIFIED BY ‘replpass’;
2 Query OK, @ rows affected (0.05 sec)

1 mysql> GRANT REPLICATION SLAVE ON *.* TO rpl user@’%’;
2 Query OK, @ rows affected (0.01 sec)

Once we accomplish this, we can start working on provisioning our global group. First,
we will stream xtrabackup from the production slave to the master of the global group

nin3s 18

in MySQL Fabric:

1 root@ip-172-30-4-141:~# innobackupex --stream=xbstream /
backups/ | ssh root@172.30.4.17 “xbstream -x -C /var/lib/
mysql”

Next, we prepare the backup on the master of the global group:

1 root@ip-172-30-4-17:~# innobackupex --apply-log --use-memo-
ry=2G /var/lib/mysql

There's still a slave to provision so we are going to scp the prepared backup to the
slave:

1 root@ip-172-30-4-17:~# scp -r /var/lib/mysql/*
root@l172.30.4.221:/var/lib/mysql/

As a next step - we need to ensure owners are set correctly:

1 root@ip-172-30-4-17:~# chown -R mysqgl.mysql /var/lib/mysql
2 root@ip-172-30-4-221:~# chown -R mysql.mysql /var/lib/mysql

The problem with GTID slave is that, by default, it may start to replicate from an old
GTID. To make sure we won't break the replication, we need to start from the exact
transaction our backup ended at. Luckily, xtrabackup contains the GTID state in
xtrabackup_binlog_info file:

1 root@ip-172-30-4-17:~# cat /var/lib/mysql/xtrabackup _bin-
log info

2 binlog.000004 818523343 2f5b9100-5803-11e6-b442-12alea-
da5517:1-136,

3 cce85cal-5802-11e6-a92f-12fa87e491f7:1-689255

Now, all we need to do is to clear current replication settings, set a value of gtid_purged

correctly - marking all GTID's covered by the backup as purged, and setup replication
again:

1 root@ip-172-30-4-17:~# mysql -ppass

1 mysql> RESET SLAVE;
2 Query OK, @ rows affected (0.00 sec)

1 mysql> RESET MASTER;
2 Query OK, @ rows affected (0.03 sec)

1 mysql> SET GLOBAL gtid_purged="2f5b9100-5803-11e6-b442-
12aleadab517:1-136,

2 cce85cal-5802-11e6-a92f-12fa87e491f7:1-689255”;

3 Query OK, @ rows affected (0.00 sec)

nin3s

19

1 mysql> CHANGE MASTER TO MASTER HOST=°172.30.4.93°, MASTER_
USER=’rpl user’, MASTER_PASSWORD=’replpass’, MASTER_AUTO_PO-
SITION=1;

2 Query OK, @ rows affected, 2 warnings (0.00 sec)

1 mysql> START SLAVE;
2 Query OK, @ rows affected (0.01 sec)

The same process has to happen on a slave in our global group:

1 root@ip-172-30-4-221:~# cat /var/lib/mysql/xtrabackup_bin-
log info

2 binlog.000004 818523343 2f5b9100-5803-11e6-bd442-12alea-
da5517:1-136,

3 cce85cal-5802-11e6-292f-12fa87e491f7:1-689255

1 root@ip-172-30-4-221:~# mysql -ppass

1 mysql> RESET SLAVE;
2 Query OK, @ rows affected (0.05 sec)

1 mysql> RESET MASTER;
2 Query OK, @ rows affected (0.03 sec)

1 mysql> SET GLOBAL gtid_purged="2f5b9100-5803-11e6-b442-
12aleada5517:1-136,

2 “> cce85cal-5802-11e6-a92f-12fa87e491f7:1-689255";

3 Query OK, @ rows affected (0.00 sec)

1 mysql> CHANGE MASTER TO MASTER_HOST=’172.30.4.17°, MASTER_

USER=’rpl _user’, MASTER_PASSWORD=’replpass’, MASTER_AUTO_PO-

SITION=1;
2 Query OK, @ rows affected, 2 warnings (0.03 sec)

1 mysql> START SLAVE;
2 Query OK, @ rows affected (0.01 sec)

At this point we have our global group provisioned and set to replicate with our
production system. Now it's time to setup the global group in MySQL Fabric. First, we
need to create a group:

1 root@ip-172-30-4-185:~# mysqlfabric group create group-glob-

al
Fabric UUID: 5calable-a007-feed-f00d-cab3fel3249e
Time-To-Live: 1

2
3
4
5 uuid finished success result
6
7

91002643-eca0@a-4f8c-b7c7-170ad4c60a52 1 1 1

nin3s

20

Then it's time to add our hosts to the group we've just created:

1 root@ip-172-30-4-185:~# mysqlfabric group add group-global
172.30.4.17:3306

2 Fabric UUID: 5calable-a@07-feed-f00d-cab3fel3249e

3 Time-To-Live: 1

4

5 uuid finished success result

6 ___

7 90a3552f-7f4a-4d77-8dal-fdf05c89fd10 1 1 1

1 root@ip-172-30-4-185:~# mysqlfabric group add group-global
172.30.4.221:3306

2 Fabric UUID: 5calable-a007-feed-f00d-cab3fel3249e

3 Time-To-Live: 1

4

5 uuid finished success result

6 ___

7 cbe2579a-beef-4eb8-9fa2-d7d5f5e8e4e2 1 1 1

Both commands finished successfully but let's check how MySQL Fabric sees our group:

1 root@ip-172-30-4-185:~# mysqlfabric group lookup_servers
group-global

2 Fabric UUID: b5calable-a007-feed-f00d-cab3fel3249e

3 Time-To-Live: 1

4

5 server_uuid address
status mode weight

T T PP P

7 2bocfodd-58b3-11e6-9360-12ca®57f857d 172.30.4.17:3306 SEC-
ONDARY READ_ONLY 1.0

8 5aa4368f-58b3-11e6-beac-1262072f5c8d 172.30.4.221:3306 SEC-
ONDARY READ_ONLY 1.0

It seems like both hosts are in the group, but they are treated as read-only replicas
(their status is set to SECONDARY). We need to promote one of them to act as a master.
We could allow MySQL Fabric to pick one of them but, as we have a replication chain

in place (see the diagram below), we want our 172.30.4.17 host to be the master of the
global group. We need to find its UUID - it can be found in the output of the command
we executed above: 2b0cf0dd-58b3-11e6-9360-12ca057f857d

nin3s

g o T B
Production
Global grou
cluster 9IE
= =
= =
[] L]
[] = r -------- BT i .> L]
: =
/1117 ' /1117 I
I
Production master | Global group '
172.30.4.93 1 PRIMARY !
: = 17230417 ! =
| = ! \ =
| ° I\ .
‘-> L] > []
/7177 /1117
Production slave Global group
172.30.4.141 SECONDARY
172.30.4.221
\ = J

Once we know the UUID, we can tell MySQL Fabric to promote this particular host to
the master:

1 root@ip-172-30-4-185:~# mysqlfabric group promote
group-global --slave_id=2b@cf@dd-58b3-11e6-9360-12ca®57f857d
Fabric UUID: 5calable-a007-feed-f00d-cab3fel3249e
Time-To-Live: 1

uuid finished success result

4110e31f-c6f2-45bf-9266-64a0fe2b3b8d 1 1 1

Nou b~ whN

Let's check the state of our global group:

1 root@ip-172-30-4-185:~# mysqlfabric group lookup_servers
group-global

2 Fabric UUID: 5calable-a0@07-feed-f00d-cab3fel3249e

3 Time-To-Live: 1

4

5 server_uuid address
status mode weight

6 __

7 2bocfodd-58b3-11e6-9360-12ca®57f857d 172.30.4.17:3306
PRIMARY READ_WRITE 1.0

8 52a4368f-58b3-11e6-beac-126207215c8d 172.30.4.221:3306 SEC-
ONDARY READ_ONLY 1.0

Everything looks as we expect - our master has a status of “PRIMARY"” and it's in "READ_
WRITE" mode.

nin3s

At this point it may happen that our “PRIMARY" host stops replicating from the
production hosts - you can check it by running SHOW SLAVE STATUS,;. If that is the
case, you will have to execute CHANGE MASTER command once more:

1 mysql> CHANGE MASTER TO MASTER HOST="172.30.4.93°, MASTER_
USER=’rpl user’, MASTER_PASSWORD=’replpass’, MASTER_AUTO_PO-
SITION=1;

2 Query OK, @ rows affected, 2 warnings (0.00 sec)

1 mysql> START SLAVE;
2 Query OK, @ rows affected (0.01 sec)

4.2.4. Define shard mappings

In the previous chapter, we set up replication between our production infrastructure and
the global group. We also setup the global group within MySQL Fabric. Next step would
be to decide how exactly we'd like to shard our application as we need to tell MySQL
Fabric which tables will be sharded and how. As we mentioned earlier, our “application”
is a sysbench with four tables created. Let's assume that we will shard three of them
using “id” column. The fourth will not be sharded. Such setup may simulate, for
example, an application which has several tables connected in some relation using the
same column. Maybe it's an e-commerce site which has large number of users. In such
case one table might contain user data like home address, shipping address, phone,
email address and so on. Another table would contain information about current and
previous transactions - who bought what and when? How much did he pay? Third table
could contain information about some social elements on the site - maybe the user
wrote some reviews of different products we sell? Maybe she took part in a discussion
about new season sales? What's important is that those tables are all connected
together using the “id” of the user and we may want to join them in a query. This is why
we want to keep all of the data of a given user together, in a single shard.

Keeping all of above in mind, we are going to shard the first three tables (sbtest1,
sbtest2 and sbtest3) using the “id” column. We will be using a RANGE sharding scheme.

1 root@ip-172-30-4-185:~# mysqlfabric sharding create_defini-
tion RANGE group-global

Fabric UUID: 5calable-a0@07-feed-f00d-cab3fel3249e
Time-To-Live: 1

uuid finished success result

228a62d4-at23-487b-bf38-c94993ebb88d 1 1 1

Nou b wN

Once we create the sharding definition, we need to define which tables we are going to
shard, and using which column.

nin3s

23

Nou b WwWN

=

Nou b whN

=

NOoOulph wniN

root@ip-172-30-4-185:~# mysqlfabric sharding add_table 1
sbtest.sbtestl id

Fabric UUID: 5calable-a0@07-feed-f00d-cab3fel3249e
Time-To-Live: 1

uuid finished success result

16f0ad9d-a3db-4f56-a60e-9a7250cf78d1 1 1 1

root@ip-172-30-4-185:~# mysqlfabric sharding add_table 1
sbtest.sbtest2 id

Fabric UUID: 5calable-a007-feed-f00d-cab3fel3249e
Time-To-Live: 1

uuid finished success result

20ac012a-2967-4a5b-be97-44196cfe8cbe 1 1 1

root@ip-172-30-4-185:~# mysqlfabric sharding add_table 1
sbtest.sbtest3 id

Fabric UUID: 5calable-a007-feed-f00d-cab3fel3249e
Time-To-Live: 1

uuid finished success result

04c5499a-b938-4454-9cee-3a69f21bdd2e 1 1 1

4.2.5. Creating shards

Having configured shard mappings, we need to create shards. Obviously, we need to
have MySQL hosts installed, but we also need to create them under MySQL Fabric. We'll
start with two shards, splitting data in half. We need to repeat the process we went
through while creating our global group - first we need to create groups:

Nou b wNR

Nou b wNR

nin3s

root@ip-172-30-4-185:~# mysqlfabric group create shard-1
Fabric UUID: 5calable-a@07-feed-f00d-cab3fel3249e
Time-To-Live: 1

uuid finished success result

5fb70a5e-1d5e-4550-9b93-5e759caa93b8 1 1 1

root@ip-172-30-4-185:~# mysqlfabric group create shard-2
Fabric UUID: 5calable-a007-feed-f00d-cab3fel3249e
Time-To-Live: 1

uuid finished success result

90acd29e-3c90-4dob-87f2-5ab6be58c04c 1 1 1

24

Next, we need to build our shard hosts. We assume MySQL is running on them and all
grants have been executed, as we discussed earlier. If so, we can benefit from MySQL
Fabric's feature to provision them with data. MySQL Fabric uses mysgldump for that so
this may not be the most suitable option for large deployments - in that case, you can
use your own method to provision the servers with data.

We'll start with the first host. Please note that we use group-global hosts as a source (in
this case MySQL Fabric will pick one of them, it is also possible to tell it explicitly which
host you'd like to provision from by using --source_id flag and passing the UUID of a
source host).

1

Nou b wWwN

root@ip-172-30-4-185:~# mysqlfabric server clone group-glob-
al 172.30.4.138

Fabric UUID: b5calable-a007-feed-f00d-cab3fel3249e
Time-To-Live: 1

uuid finished success result

43490d9c-5371-44e7-8eb8-abc079976a18 1 1 1

Once provisioning completes, we need to add it to the shard-1:

1

2
3
4
5
6
7

And finally, we want this host to become a master in our shard - we need to promote it:

Nou b wNR

root@ip-172-30-4-185:~# mysqlfabric group add shard-1
172.30.4.138:3306

Fabric UUID: 5calable-a0@07-feed-f00d-cab3fel3249e
Time-To-Live: 1

uuid finished success result

7b119581-1279-42f4-9¢c31-c56dd0lelb74 1 1 1

root@ip-172-30-4-185:~# mysqlfabric group promote shard-1
Fabric UUID: 5calable-a@07-feed-f00d-cab3fel3249e
Time-To-Live: 1

uuid finished success result

95b9c34f-3268-4118-995f-728b6ea963a3 1 1 1

Then, our next host follows a similar path - we need to provision it and add it to
the shard. Please note, this time we used shard-1 group as a source of our data -
mysqldump will be executed on our master:

nin3s

25

2
3
4
5
6
7

root@ip-172-30-4-185:~# mysqlfabric server clone shard-1
172.30.4.193

Fabric UUID: 5calable-a0@07-feed-f00d-cab3fel3249e
Time-To-Live: 1

uuid finished success result

el46a6f2-6dde-40a0-ae69-817fd5033b12 1 1 1

Once this process completes, we can add the host to the shard.

1

NOoOulph wnN

root@ip-172-30-4-185:~# mysqlfabric group add shard-1
172.30.4.193:3306

Fabric UUID: 5calable-a007-feed-f00d-cab3fel3249e
Time-To-Live: 1

uuid finished success result

53ccc8ca-3438-4a8d-acel-5159eee68103 1 1 1

Similar process has to be performed for the second shard. Steps are exactly the same so
we will skip our explanations. The console output will look as per below:

1

NOoO ulph wnN

=

Nou b whN

NouphwNPR

nin3s

root@ip-172-30-4-185:~# mysqlfabric server clone group-glob-
al 172.30.4.76

Fabric UUID: b5calable-a007-feed-f00d-cab3fel3249e
Time-To-Live: 1

uuid finished success result

c68a8f89-ff4b-466b-9106-093e5cd38339 1 1 1

root@ip-172-30-4-185:~# mysqlfabric group add shard-2
172.30.4.76:3306

Fabric UUID: 5calable-a007-feed-f00d-cab3fel3249e
Time-To-Live: 1

uuid finished success result

28658ea0-9bd5-48al1-90ef-f749e326fecl 1 1 1

root@ip-172-30-4-185:~# mysqlfabric group promote shard-2
Fabric UUID: b5calable-a007-feed-f00d-cab3fel3249e
Time-To-Live: 1

uuid finished success result

374035cc-479c-425e-beb7-7bb468a9c220 1 1 1

26

1 root@ip-172-30-4-185:~# mysqlfabric server clone shard-2
172.30.4.30

2 Fabric UUID: 5calable-a007-feed-f00d-cab3fel3249e

3 Time-To-Live: 1

4

5 uuid finished success result

6 ___

7 6c684elf-7fb4-43b1-8513-5d4757fe7a8f 1 1 1

1 root@ip-172-30-4-185:~# mysqlfabric group add shard-2
172.30.4.30:3306

2 Fabric UUID: 5calable-a007-feed-f00d-cab3fel3249e

3 Time-To-Live: 1

4

5 uuid finished success result

6 ___

7 90618548-e6d0-4f73-aea®-95850fd4496cC 1 1 1

Now, it might be a good idea to activate failure detection in our groups. MySQL Fabric
will start to monitor status of MySQL and replication and it will trigger slave promotions
if