
1

Database Sharding
with MySQL Fabric

2

3

Table of Contents
1. Why Sharding? 4

2. How does Sharding work? 5
 2.1. Functional sharding 5
 2.2. Expression-based sharding 6
 2.3. Metadata-based sharding 7

3. Sharding solutions 8
 3.1. Vitess 8
 3.1.1. Tablets 9
 3.1.2. How sharding works in Vitess? 9
 3.1.3. Migration into Vitess cluster 10
 3.2. MySQL Fabric 10
 3.2.1. High availability in MySQL Fabric 11
 3.2.2. Scaling out with MySQL Fabric 11
 3.2.3. Query routing in MySQL Fabric 12

4. Migrating into sharded environment with MySQL Fabric 13
 4.1. Environment overview 13
 4.2. Setting up MySQL Fabric 15
 4.2.1. Installation 15
 4.2.2. Initial setup 15
 4.2.3. Setting up global replication group 18
 4.2.4. Define shard mappings 23
 4.2.5. Creating shards 24
 4.3. Setting up MySQL Router 28
 4.3.1. Installation of MySQL Router 28
 4.3.2. Configuring MySQL Router 28
 4.4. Configuring ProxySQL for sharding 30
 4.4.1. Configuring hostgroups 30
 4.4.2. Configuring query rules 31
 4.4.3. Testing of query rules 34
 4.5. Cutover process 34
 4.5.1. Preparations 34
 4.5.2. Cutover 38
 4.5.3. Cleanup 38
 4.6. Typical operations in MySQL Fabric sharded environment 39
 4.6.1. Add node to shard 39
 4.6.2. Remove node from a shard 40
 4.6.3. Promote a secondary node in a shard 41
 4.6.4. Move shard to a different high availability group 42
 4.6.5. Splitting the shard 45
 4.7. High availability aspect 51
 4.8. Summary 51

5. About Severalnines 52

6. Related Resources from Severalnines 53

4

Database systems with large data sets or high throughput applications can challenge
the capacity of a single database server. High query rates can exhaust CPU capacity, I/O
resources, RAM or even network bandwidth.

Horizontal scaling is often the only way to scale out your infrastructure. You can
upgrade to more powerful hardware, but there is a limit on how much load a single
host can handle. You may be able to purchase the most expensive and the fastest CPU
or storage on the market, but it still may not be enough to handle your workload. The
only feasible way to scale beyond the constraints of a single host is to utilize multiple
hosts working together as a part of a cluster or connected using replication.

Horizontal scaling has its limits too, though. When it comes to scaling reads, it is very
effi cient - just add a node and you can utilize additional processing power. With writes,
things are completely diff erent. Consider a MySQL replication setup. Historically, MySQL
replication used a single thread to process writes - in a multi-user, highly concurrent
environment, this was a serious limitation. This has changed recently. In MySQL 5.6,
multiple schemas could be replicated in parallel. In MySQL 5.7, after addition of a
‘logical clock’ scheduler, it became possible for a single-schema workload to benefi t
from the parallelization of multi-threaded replication. Galera Cluster for MySQL also
allows for multi-threaded replication by utilizing multiple workers to apply writesets.
Still, even with those enhancements, you can get just some incremental improvement in
the write throughput - it is not the solution to the problem.

One solution would be to split our data across multiple servers using some kind of a
pattern and, in that way, to split writes across multiple MySQL hosts. This is sharding.

Why Sharding?

5

The idea is really simple - if my database server cannot handle the amount of writes,
let’s split the data somehow and store one part, generating part of the write traffi c, on
one database host and the other part on another host. In that way, each host will have
to handle half of the writes which should be well within their hardware limits. We can
further split the data and distribute it on more servers if our write workload grows.

The actual implementation is more complex as there are numerous issues you need to
solve before you can implement sharding. How will you split the data? How will you fi nd
a correct shard for a query? What you are going to do when one of your shards grows
in size and traffi c, and outgrows the hardware? How will you scale your environment -
preshard it or maybe add new shards when the need arises?

The fi rst, very important question that you need to answer is - how are you going to
split your data?

2.1. Functional sharding
Let’s imagine your application is built out of multiple modules, or microservices if
we want to be fashionable. Assume it’s a large online store with a backend of several
warehouses. Such site may contain a module to handle warehouse logistics - check
the availability of an item, track shipment from a warehouse to a customer. Another
module may be an online store - a website with a presentation of available goods. Yet
another module would be a transaction module - collect and store credit cards, handle
transaction processing and so on. Maybe the online store has a large, buzzing forum
where customers share opinions on goods, discuss support issues etc. You may start

How does Sharding work?

6

your voyage in the world of shards by using a separate database per module. This will
allow you to gain some breathing space and plan for next steps. On the other hand, the
next step may not be necessary at all if each shard can comfortably handle its workload.
Of course, there are downsides of such setup - you cannot easily query data across
modules (shards) - you have to execute separate queries to separate databases and
then combine together resultsets. Unfortunately, this is a typical limitation of a sharded
system and there’s not much you can do about it. Recently, with MySQL 5.7, multi-
source replication has become possible - this may become a method to aggregate data
from multiple shards and query it.

The issue you’d have to solve when utilizing this method is, well, the very same issue
which forced you to use sharding - limited write capacity. In short, if you aggregate all
shards into a single slave, it is highly improbable the slave will keep up with replication.
On the other hand, maybe it is enough to aggregate only a couple of tables from each
shard and query them on a single slave. Another problem with the functional sharding
is that, at the end, some of the modules in your application may still outgrow your
hardware - maybe you can further split these modules but if that is not possible, then
you need to consider a diff erent sharding strategy.

2.2. Expression-based sharding
Another method of splitting the data across shards would be to use some kind of
expression or function/algorithm to help us decide where the data should be located.
Let’s imagine you have a database with one large table that is commonly accessed and
written to. For example, assume a social media site and our largest table contains data
about users and their activities. This table uses some kind of id column as primary key
- we need to split it somehow and one of the ways would be to apply an expression to
the ID value. A very popular choice is to use a modulo function - if we want to generate

7

128 shards, we can just apply expression of ‘id % 128’ and this would calculate the shard
number where a given row should be stored. Another method include making use of a
date range, e.g., all user activity in year 2015 is stored in one database, activity in year
2016 is stored in a separate database). Yet another one would be to distribute data
based on a list of attributes, e.g., all users from a specifi c country end up in the same
shard.

This approach has both pros and cons. It’s really nice that you can easily locate the
shard for any given row - no need to do any complex operations or queries, just
evaluate the expression used for sharding using a value of a given ID (i.e. calculate
the modulo and see which shard the row belongs to) and you are all set. This works
both ways - not only when you retrieve the data but also when you store it. The main
limitation is that, once you deploy your shards, it may not be easy to add more of them
- in our example we could add more shards by increasing the value in our modulo
expression, but it would seriously aff ect calculations on where data is stored currently.
The only feasible way is to completely redistribute data across shards, but this would be
a time-consuming process.

2.3. Metadata-based sharding
As we discussed above, both functional sharding and expression-based sharding have
limitations when it comes to scaling out in terms of number of shards. There’s still one
more method which gives you more fl exibility in managing shards - a metadata-based
sharding. The idea is very simple - instead of using some kind of hard-coded algorithm,
let’s just write down where a given row is located: row of id=1 - shard 1, row with id=2 -
shard 5. Finally, let’s build a database to keep this metadata.

This approach has a huge benefi t - you can store any row in any shard. You can also
easily add new shards to the mix - just set them up and start to store data on them.
You can also easily migrate data between shards - nothing stops you from copying data
between shards and then making an adjustment in the metadata. In reality it’s more
complex than it sounds as you have to make sure you move all the data so some kind
of data locking is required. For example, to copy data between shards, you’d have to
do an initial copy of the data across shards, lock access to the part of the data which is
migrated, make a fi nal sync and, fi nally, change an entry in the metadata database and
unlock the data.

Another issue is the metadata itself - if there’s no algorithm to locate a shard for a given
row, you have to query the metadata database and check where you should look for a
particular row. If the metadata database become unavailable, your whole application
won’t be able to operate. This makes the availability of the metadata crucial - it has
to be rock-solid so your application can reach it and check where the data is. High
availability is a one challenge. Scaling the metadata database is another one - again,
scaling reads can be done by e.g., adding slaves to a replication setup. If the write
capacity is limited, you may have to shard the metadata database as well.

8

We’ve discussed several approaches to sharding. The most fl exible one, sharding using
metadata, is also the most complex one to implement. You need to design the meta-
database, and build high availability not only for your application data but also for the
metadata. On top of that, you need to design your application so it will be aware of
the complex database infrastructure beneath - it has to query metadata fi rst and then
it has to be directed to a correct shard to read or write data. You will also have to build
a set of tools to manage and maintain the metadata. Migrating data requires caution
so it has to be done carefully. You also have to make sure that any operations on the
production databases are mirrored in the metadata - have you taken a slave out of
rotation? This should be refl ected in the metadata. Have you added a new slave to a
shard? You have to modify the metadata and add that host. As you can imagine, lot
of time and eff ort has to be put into developing and maintaining scripts and tools to
manage such setup. It begs the question - is there some external solution to design,
deploy and manage a sharded environment? In this chapter, we will cover a couple of
solutions which are available on the market and which may help you to build a scalable,
sharded infrastructure.

3.1. Vitess

Vitess is a tool built to help manage sharded environments. It was developed to help
scale out databases at Youtube. In short, it is a solution based on metadata - by default,
it uses range sharding but it is also possible to implement a custom sharding schema.
Topology data is stored and maintained in a service like Zookeeper or etcd. Application
access data using a lightweight proxy, named ‘vtgate’ in Vitess’ nomenclature. Vtgate
connects to the metadata store and checks the data distribution - this allows it to route
queries to correct shards - ‘tablets’.

Sharding solutions

9

3.1.1. Tablets
A tablet is a pair of vttablet and mysqld processes - basically, it’s a MySQL installation.
A tablet can have couple of roles - just like a MySQL host. A tablet can be a master
- which means that that particular MySQL acts as a master for its particular shard. A
replica is another role - such tablets act more or less as slaves. They serve traffi c and
they can be promoted to a master role at any time. There are more roles than that,
though. Rdonly is a tablet which acts as a slave but it cannot be promoted to a master.
Such role fi ts great with tablets which are intended to handle some intense, heavy
duty work. It can be used as a backup server, or dedicated for some CPU-intensive
processes like analytical queries. A backup tablet is a tablet which has replication
stopped and it’s “frozen” data-wise. Most likely a consistent backup is being taken from
it and it will resume its replication and return to its original type as soon as the backup
operation completes. Another type is restore - it means that the tablet has been started
without any data and it is currently in the process of having its data restored. Once it
completes, the tablet will resume replication and will become either rdonly or replica.
Finally, a worker - this is a tablet which has been reserved by one of Vitess background
processes. Once this process completes, the tablet will return to its original state.

3.1.2. How sharding works in Vitess?
To understand how sharding works in Vitess, we need to introduce some new
terminology. We’ve already mentioned tablets, which may have multiple roles. Usually
you have a master and several replicas - for high availability. This set of tablets form a
shard. A shard, on the other hand, is a partition of a keyspace. Keyspace is a collection
of tables, more or less similar to MySQL’s schema. You can have one or more keyspaces
- just like schemas in MySQL. If you do not use shards, a keyspace will be located on a
single set of tablets - a master and several slaves.

Vitess supports range sharding - the keyspace is divided into two or more partitions,
each partition covering a range of data. To fi nd ranges, Vitess has to use a column of
some kind to calculate them - currently supported data types are BIGINT UNSIGNED
and VARBINARY. This works very well with id’s which usually use unsigned integer
format.

10

When the fi rst two shards are added in Vitess, relevant ranges are calculated so that
data is split more or less in half - we will not go into details of how this is implemented.
What’s important is that you’ll end up with two ranges - let’s say id’s 0-500 and 501 -
maximum value. Each of those ranges can be split in half to create another two shards.
You may see a potential limitation here - it is not possible to group diff erent, not
adjacent ranges together. Therefore sometimes, you’ll end up with more shards that
you actually need. This should not be a problem.

Day-to-day operations may require changes in shard structure - most often you will
end up having split shards because they would outgrow the hardware performance-
wise, but sometimes the workload may reduce and you may want to merge some of the
shards. Of course, Vitess supports those operations within the limits of the range-based
sharding - you can combine adjacent shards, you can split a shard into two or more
parts.

While range-based sharding is the default option in Vitess, it is also possible to
implement a custom sharding schema using Vitess. It is more complex though and
requires additional logic implemented on the application side. In short, when trying
to implement custom sharding in Vitess, you should treat it more like a set of MySQL
hosts. What you basically have to do is to create shards, name them however you want
and then use one of the keyspaces (which is, at the minimum, a set of tablets - master
and couple replicas) as a lookup keyspace in which you’ll store data about where a
given row is located. So, at the end you will end up with at least two keyspaces. One
which contain application data and a lookup keyspace (which also can be sharded,
using Vitess’ range sharding). The lookup keyspace would be queried by the application
to retrieve the shard name where a given row is located - then the application can
direct queries to the correct shard.

Unfortunately, using custom sharding makes impossible to benefi t from the additional
tooling Vitess provides - there’s no option for automated resharding nor there is a
support for custom sharding in Vitess’ API.

3.1.3. Migration into Vitess cluster
Once you deploy a Vitess cluster, you need to migrate into it from your production
MySQL infrastructure. Unfortunately, this is tricky. Obviously, you could dump and then
reload the data but such process takes a long time and requires downtime - which
makes it not suitable for majority of cases.

The only feasible method of migrating into a Vitess cluster would be to setup replication
between your production system and new Vitess cluster. Unfortunately, such operation
may not be the easiest, especially if your current environment is a complex one.
Additional issue may be the fact that, to connect to Vitess, you may need to modify
your application to use diff erent libraries than what you already using to connect to
MySQL. There’s work in progress to integrate libraries with several database drivers - Go
(database/sql) and Python (DB API) should work fi ne, Java (JDBC) and PHP (PDO) are
work in progress, but if your application uses a diff erent language, it may not be that
easy to migrate into Vitess.

3.2. MySQL Fabric
In 2014, Oracle introduced a new set of tools for MySQL, called “MySQL Fabric”.
Historically, there was no offi cial tool which would allow users to build highly available
topologies, including sharded setups. The idea behind Fabric is to provide an “offi cial”

11

tooling for building such setups. It provides a framework and tools to manage groups
of highly-available MySQL instances. It supports implementation of HA setups and
scaling through sharding.

3.2.1. High availability in MySQL Fabric
MySQL Fabric uses a concept of high-availability groups - a group contains two or more
MySQL servers connected using replication (actually, you can have just a single host in
a group but, obviously, it won’t be highly-available). Each server may have several roles
- it can be either a “primary” - that is, a master for a given high-availability group; it can
be also a “secondary”, when it’s acting as a slave or “spare”. A host can also be “offl ine”
or “faulty”, if something is not right with it or its replication setup.

MySQL Fabric can take care of the fault detection within a group, to make sure that your
application will be able to query it. If the primary host fails, one of secondary hosts will
take over its role and start serving writes.

3.2.2. Scaling out with MySQL Fabric
MySQL Fabric not only gives you the ability to maintain availability of your data - it also
supports scaling out through sharding. The basic idea is - if we can confi gure a few
servers into a single high-availability group, we can then scale by having more of them.
Then we’d need to implement some kind of shard mapping - we need to decide which
column to use for sharding and which tables should be sharded. Another decision
has to be made on what algorithm should be used to shard your data - MySQL Fabric
supports “hash”, which, as long as there are no hash collisions, should result in even
distribution of rows across shards, and “range”, which works fairly similarly to what we
discussed in Vitess - a user can defi ne ranges of rows handled by a single shard - this
allows for rather fi ne-grained control of where a particular set of data is located.

Shards are created out of groups of hosts - a group having one or more hosts in
master-slave setup. If you want to deploy four shards, four groups have to be created.
One interesting concept of MySQL Fabric is a “global” group. It also consists of one or
more MySQL hosts. The idea here is that every master in each shard replicates from the
master of “global” group. The global group is a place where all non-sharded tables are
going to be updated. This group is also used when performing schema changes.

12

3.2.3. Query routing in MySQL Fabric
One of the challenges with a sharded setup is how to ensure that the application will
be able to connect to the correct shard in order to issue queries. Some tool or module
should have up-to-date state information about the database tier - which hosts are
online, which hosts handle which shard etc. In MySQL Fabric, such data is stored in
Fabric cache, which is then queried by the connector before it routes requests from
the application. The best case scenario is when the application doesn’t have to know
anything about the complexity of the sharded infrastructure. Unfortunately, MySQL
Fabric is not there yet - the application has to use MySQL Fabric-related code from
the MySQL Connector and pass the sharding key - it has to pass an integer value or a
hash, and based on that, MySQL Fabric will decide the shard to which the connection
is to be routed to. This is not an ideal solution as your code has to be modifi ed before
your application can connect to the MySQL Fabric setup. The change is made in the
connection properties. Note that you have to modify your application anyway to
connect to the MySQL Fabric connector instead of opening a direct connection to
MySQL.

One particular problem is with range queries - they may aff ect multiple shards and this
is not possible to do in automated way. If your application needs to run range queries
over the sharding key, your application will have to understand how data is sharded
before such a query can be executed. It is not a particular fl aw of MySQL Fabric as this
particular issue is typical in sharded systems in general, but we wanted to make it clear
that MySQL Fabric won’t solve it for you.

To avoid some of the problems, MySQL Fabric can work with MySQL Router. This is
another tool from Oracle which is intended to provide routing for highly available
MySQL environments. It also has a “Fabric-integration” mode. When confi gured to
work with MySQL Fabric, MySQL Router will connect to the Fabric cache, collect data
on the state of the Fabric environment and use this data to route queries accordingly.
Unfortunately, this works only on the “high availability group” level only - you cannot
connect to MySQL Router and let it route your query to a correct shard - you’d have
to expose connections to each group over the MySQL Router using diff erent ports
and then make your application pick one of them to connect to. This may sound
cumbersome, but under some circumstances, it may work really nicely as we hope to
showcase later in this ebook.

13

In this chapter, we’ll walk you through the process of migrating from a master-slave
replication setup to a sharded environment created and maintained by MySQL Fabric.
We will be using MySQL Router to make the transition even easier for your application.

4.1. Environment overview
Our initial environment is a master-slave replication setup running MySQL 5.7. Our
application will be sysbench. We will use four tables, each containing 1 million rows.
Below you can fi nd the exact command that was used to create and populate those
tables.

For generating traffi c, we will use the following fl ags in sysbench:

Our application will use only primary key-based queries, both selects and DML’s. We are
also not going to use transactions. This is a result of limitations of the sharding system.
If you split your table across several shards, you can’t really execute range queries. Let’s
imagine the following case - you have 1000 rows across two shards, i.e., 500 in each
shard. Let’s assume the following query:

Where should this query be executed? If you run it on the fi rst shard, you’ll see the
result of 100 (as it contains id’s 400 - 500). If you run it on the second shard, you’ll
again see the result of 100 (as it contains id’s 500 - 600). None of those queries return
a valid result (200) - your application has to understand how data is sharded before
range queries would be feasible to execute. In this case, it should execute two queries
on two shards and combine results into one. Similar situation is with transactions - as

Migrating into sharded
environment with MySQL
Fabric

1 sysbench --test=/root/sysbench/sysbench/tests/db/oltp.
lua --num-threads=2 --max-requests=0 --max-time=0 --mysql-
host=172.30.4.93 --mysql-user=sbtest --mysql-password=sbtest
--mysql-port=3306 --oltp-tables-count=4 --report-interval=10
--oltp-skip-trx=off --oltp-table-size=1000000 prepare

1 --oltp-skip-trx=on --oltp-simple-ranges=0 --oltp-sum-rang-
es=0 --oltp-order-ranges=0 --oltp-distinct-ranges=0

1 SELECT COUNT(*) FROM tab1 WHERE id BETWEEN 400 AND 600;

14

long as you execute a transaction within the scope of a single shard, it is perfectly
fi ne. You cannot run cross-shard transactions, though - therefore, if you want to run a
transaction, you have to be certain that the queries executed within it will be relevant to
a single shard only.

Please also note, we are going to focus on the sharding setup - we won’t cover all the
details that are required in a real life environment to make your application sharding-
compatible. For example, one of the issues you’ll face when working with shards is that
you cannot use an auto_increment primary key. This is due to the fact that if you split
such a table across a couple of shards, you’ll end up with the same id’s generated in
multiple shards due to auto_increment behavior. It is possible to manipulate it using
auto_increment_increment and auto_increment_off set, but it’s tricky and error-prone.
The recommended solution is to use some kind of external id generator which will
generate a new id for each insert - making sure there are no confl icts. An example of
such generator may be ‘Snowflake’, created by Twitter. In our example, we will remove
auto_increment from the primary key (PK) column and demo inserts using manually
prepared statements.

The following SQL clears the auto_increment:

As proxy, we use ProxySQL confi gured to perform read/write split of the traffi c between
our master and slave. It will be also used to route our traffi c across multiple shards and
it will be useful in making sure our traffi c can be moved from the old master to MySQL
Router without any impact on our application. Confi guration of the ProxySQL has been
covered in one of our blog posts: http://severalnines.com/blog/how-proxysql-adds-
failover-and-query-control-your-mysql-replication-setup

We’ll remember to make sure that our slave has the read_only variable set to 1.

Once we are done with the ProxySQL setup, we can run our application using the
following command:

1 alter table sbtest.sbtest1 modify column id int unsigned NOT
NULL;

2 alter table sbtest.sbtest2 modify column id int unsigned NOT
NULL;

3 alter table sbtest.sbtest3 modify column id int unsigned NOT
NULL;

4 alter table sbtest.sbtest4 modify column id int unsigned NOT
NULL;

1 while true ; do sysbench --test=/root/sysbench/sysbench/
tests/db/oltp.lua --num-threads=2 --max-requests=0 --max-
time=0 --mysql-host=172.30.4.185 --mysql-user=sbtest
--mysql-password=sbtest --mysql-port=6033 --oltp-tables-
count=4 --report-interval=10 --oltp-skip-trx=on --oltp-sim-
ple-ranges=0 --oltp-sum-ranges=0 --oltp-order-ranges=0
--oltp-distinct-ranges=0 --oltp-table-size=1000000 run ;
done

https://github.com/twitter/snowflake
http://severalnines.com/blog/how-proxysql-adds-failover-and-query-control-your-mysql-replication-setup

15

4.2. Setting up MySQL Fabric

4.2.1. Installation
To install MySQL Fabric you need to install mysql-utilities package. You can download it
for your OS version from this link:

https://dev.mysql.com/downloads/utilities/

In our case, system is Ubuntu 14.04 and we had to install one more package for
dependencies - mysql-connector-python. It is available from the following site:

https://dev.mysql.com/downloads/connector/python/

Installation on our system required:

This is all you need to download and install to get started with MySQL Fabric.

4.2.2. Initial setup
MySQL Fabric requires to have an access to some backend MySQL server to store
its confi guration and cluster setup. It has to be MySQL 5.6.10 or newer but it’s
recommended to have a backend with the same version as the other hosts managed by
MySQL Fabric. We need to create a MySQL user which would be used by MySQL Fabric.

Couple more will have to be created on the managed MySQL hosts.

1 root@ip-172-30-4-185:~# wget http://cdn.mysql.com//Down-
loads/MySQLGUITools/mysql-utilities_1.5.6-1ubuntu14.04_all.
deb

2 root@ip-172-30-4-185:~# wget http://cdn.mysql.com//Down-
loads/Connector-Python/mysql-connector-python_2.1.3-1ubun-
tu14.04_all.deb

3 root@ip-172-30-4-185:~# dpkg -i mysql-utilities_1.5.6-1ubun-
tu14.04_all.deb mysql-connector-python_2.1.3-1ubuntu14.04_
all.deb

1 mysql> CREATE USER ‘fabric_store’@’%’ IDENTIFIED BY ‘pass’;
2 Query OK, 0 rows affected (0.00 sec)

1 mysql> GRANT ALTER, CREATE, CREATE VIEW, DELETE, DROP,
EVENT, INDEX, INSERT, REFERENCES, SELECT, UPDATE ON mysql_
fabric.* TO ‘fabric_store’@’%’;

2 Query OK, 0 rows affected (0.00 sec)

1 mysql> CREATE USER ‘fabric_server’@’%’ IDENTIFIED BY ‘pass’;
2 Query OK, 0 rows affected (0.06 sec)

https://dev.mysql.com/downloads/utilities/
https://dev.mysql.com/downloads/connector/python/

16

Next step will require editing Fabric’s confi guration fi le which is located (for Ubuntu
14.04) in /etc/mysql/fabric.cfg. We want to edit [storage] and [servers] section, we also
added password and IP address to [protocol.xmlrpc] and [protocol.mysql] sections.
Below you can fi nd a complete confi guration fi le with all of our changes included.

1 mysql> GRANT DELETE, PROCESS, RELOAD, REPLICATION CLIENT,
REPLICATION SLAVE, SELECT, SUPER, TRIGGER ON *.* TO ‘fab-
ric_server’@’%’;

2 Query OK, 0 rows affected, 1 warning (0.00 sec)

1 mysql> GRANT ALTER, CREATE, DELETE, DROP, INSERT, SELECT,
UPDATE ON mysql_fabric.* TO ‘fabric_server’@’%’;

2 Query OK, 0 rows affected (0.00 sec)

1 mysql> CREATE USER ‘fabric_backup’@’%’ IDENTIFIED BY ‘pass’;
2 Query OK, 0 rows affected (0.02 sec)

1 mysql> GRANT EVENT, EXECUTE, REFERENCES, SELECT, SHOW VIEW,
TRIGGER ON *.* TO ‘fabric_backup’@’%’;

2 Query OK, 0 rows affected, 1 warning (0.01 sec)

1 mysql> CREATE USER ‘fabric_restore’@’%’ IDENTIFIED BY
‘pass’;

2 Query OK, 0 rows affected (0.05 sec)

1 mysql> GRANT ALTER, ALTER ROUTINE, CREATE, CREATE ROUTINE,
CREATE TABLESPACE, CREATE VIEW, DROP, EVENT, INSERT, LOCK
TABLES, REFERENCES, SELECT, SUPER, TRIGGER ON *.* TO ‘fab-
ric_restore’@’%’;

2 Query OK, 0 rows affected, 1 warning (0.01 sec)

1 root@ip-172-30-4-185:~# cat /etc/mysql/fabric.cfg
2 [DEFAULT]
3 prefi x =
4 sysconfdir = /etc
5 logdir = /var/log
6
7 [storage]
8 address = 172.30.4.185:3306
9 user = fabric_store
10 password = pass
11 database = mysql_fabric
12 auth_plugin = mysql_native_password
13 connection_timeout = 6
14 connection_attempts = 6
15 connection_delay = 1
16
17 [servers]
18 user = fabric_server

17

19 password = pass
20 backup_user = fabric_backup
21 backup_password = pass
22 restore_user = fabric_restore
23 restore_password = pass
24 unreachable_timeout = 5
25
26 [protocol.xmlrpc]
27 address = 172.30.4.185:32274
28 threads = 5
29 user = admin
30 password = pass
31 disable_authentication = no
32 realm = MySQL Fabric
33 ssl_ca =
34 ssl_cert =
35 ssl_key =
36
37 [protocol.mysql]
38 address = 172.30.4.185:32275
39 user = admin
40 password = pass
41 disable_authentication = no
42 ssl_ca =
43 ssl_cert =
44 ssl_key =
45
46 [executor]
47 executors = 5
48
49 [logging]
50 level = INFO
51 url = fi le:///var/log/fabric.log
52
53 [sharding]
54 mysqldump_program = /usr/bin/mysqldump
55 mysqlclient_program = /usr/bin/mysql
56 prune_limit = 10000
57
58 [statistics]
59 prune_time = 3600
60
61 [failure_tracking]
62 notifi cations = 300
63 notifi cation_clients = 50
64 notifi cation_interval = 60
65 failover_interval = 0
66 detections = 3
67 detection_interval = 6
68 detection_timeout = 1

18

Next step will be to create any required schemas and tables for the MySQL Fabric
database:

Once this is done, we can start the MySQL Fabric management service as a daemon:

4.2.3. Setting up global replication group
Before we proceed with setting up shards, we need to set up the global group. For
that we prepared two hosts in master-slave setup as we’d like to maintain some level
of availability. We will want the master of our global group to slave off our production
master. We will use MySQL replication to keep our setup under MySQL Fabric up to
date until cutover happens.

Replication requires hosts in the global group to be provisioned in some manner (unless
you still have all binary logs) - you can use mysqldump if you have some free time (or
if your dataset is small). You can also use xtrabackup to provision them. Any method
of provisioning a slave will do. We are going to use xtrabackup to prepare nodes and
then we will setup replication. But before we do that, let’s add a replication user on our
production master - we’ll use it later to setup the replication:

Once we accomplish this, we can start working on provisioning our global group. First,
we will stream xtrabackup from the production slave to the master of the global group

69 prune_time = 3600
70
71 [connector]
72 ttl = 1

1 root@ip-172-30-4-185:~# mysqlfabric manage setup
2 [INFO] 1470138218.386342 - MainThread - Initializing per-

sister: user (fabric_store), server (localhost:3306), data-
base (mysql_fabric).

3 [INFO] 1470138220.312645 - MainThread - Initial password for
admin/mysql set

4 Password set for admin/mysql from confi guration fi le.
5 [INFO] 1470138220.320492 - MainThread - Password set for ad-

min/mysql from confi guration fi le.
6 [INFO] 1470138220.321065 - MainThread - Initial password for

admin/xmlrpc set
7 Password set for admin/xmlrpc from confi guration fi le.
8 [INFO] 1470138220.327604 - MainThread - Password set for ad-

min/xmlrpc from confi guration fi le.

1 root@ip-172-30-4-185:~# mysqlfabric manage start --daemon

1 mysql> CREATE USER rpl_user@’%’ IDENTIFIED BY ‘replpass’;
2 Query OK, 0 rows affected (0.05 sec)

1 mysql> GRANT REPLICATION SLAVE ON *.* TO rpl_user@’%’;
2 Query OK, 0 rows affected (0.01 sec)

19

in MySQL Fabric:

Next, we prepare the backup on the master of the global group:

There’s still a slave to provision so we are going to scp the prepared backup to the
slave:

As a next step - we need to ensure owners are set correctly:

The problem with GTID slave is that, by default, it may start to replicate from an old
GTID. To make sure we won’t break the replication, we need to start from the exact
transaction our backup ended at. Luckily, xtrabackup contains the GTID state in
xtrabackup_binlog_info fi le:

Now, all we need to do is to clear current replication settings, set a value of gtid_purged
correctly - marking all GTID’s covered by the backup as purged, and setup replication
again:

1 root@ip-172-30-4-141:~# innobackupex --stream=xbstream /
backups/ | ssh root@172.30.4.17 “xbstream -x -C /var/lib/
mysql”

1 root@ip-172-30-4-17:~# innobackupex --apply-log --use-memo-
ry=2G /var/lib/mysql

1 root@ip-172-30-4-17:~# scp -r /var/lib/mysql/*
root@172.30.4.221:/var/lib/mysql/

1 root@ip-172-30-4-17:~# chown -R mysql.mysql /var/lib/mysql
2 root@ip-172-30-4-221:~# chown -R mysql.mysql /var/lib/mysql

1 root@ip-172-30-4-17:~# cat /var/lib/mysql/xtrabackup_bin-
log_info

2 binlog.000004 818523343 2f5b9100-5803-11e6-b442-12a1ea-
da5517:1-136,

3 cce85ca1-5802-11e6-a92f-12fa87e491f7:1-689255

1 root@ip-172-30-4-17:~# mysql -ppass

1 mysql> RESET SLAVE;
2 Query OK, 0 rows affected (0.00 sec)

1 mysql> SET GLOBAL gtid_purged=”2f5b9100-5803-11e6-b442-
12a1eada5517:1-136,

2 cce85ca1-5802-11e6-a92f-12fa87e491f7:1-689255”;
3 Query OK, 0 rows affected (0.00 sec)

1 mysql> RESET MASTER;
2 Query OK, 0 rows affected (0.03 sec)

20

The same process has to happen on a slave in our global group:

At this point we have our global group provisioned and set to replicate with our
production system. Now it’s time to setup the global group in MySQL Fabric. First, we
need to create a group:

1 mysql> CHANGE MASTER TO MASTER_HOST=’172.30.4.93’, MASTER_
USER=’rpl_user’, MASTER_PASSWORD=’replpass’, MASTER_AUTO_PO-
SITION=1;

2 Query OK, 0 rows affected, 2 warnings (0.00 sec)

1 mysql> START SLAVE;
2 Query OK, 0 rows affected (0.01 sec)

1 root@ip-172-30-4-221:~# cat /var/lib/mysql/xtrabackup_bin-
log_info

2 binlog.000004 818523343 2f5b9100-5803-11e6-b442-12a1ea-
da5517:1-136,

3 cce85ca1-5802-11e6-a92f-12fa87e491f7:1-689255

1 root@ip-172-30-4-221:~# mysql -ppass

1 mysql> RESET SLAVE;
2 Query OK, 0 rows affected (0.05 sec)

1 mysql> RESET MASTER;
2 Query OK, 0 rows affected (0.03 sec)

1 mysql> SET GLOBAL gtid_purged=”2f5b9100-5803-11e6-b442-
12a1eada5517:1-136,

2 “> cce85ca1-5802-11e6-a92f-12fa87e491f7:1-689255”;
3 Query OK, 0 rows affected (0.00 sec)

1 mysql> CHANGE MASTER TO MASTER_HOST=’172.30.4.17’, MASTER_
USER=’rpl_user’, MASTER_PASSWORD=’replpass’, MASTER_AUTO_PO-
SITION=1;

2 Query OK, 0 rows affected, 2 warnings (0.03 sec)

1 mysql> START SLAVE;
2 Query OK, 0 rows affected (0.01 sec)

1 root@ip-172-30-4-185:~# mysqlfabric group create group-glob-
al

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 9f002643-ea0a-4f8c-b7c7-170ad4c60a52 1 1 1

21

Then it’s time to add our hosts to the group we’ve just created:

Both commands fi nished successfully but let’s check how MySQL Fabric sees our group:

It seems like both hosts are in the group, but they are treated as read-only replicas
(their status is set to SECONDARY). We need to promote one of them to act as a master.
We could allow MySQL Fabric to pick one of them but, as we have a replication chain
in place (see the diagram below), we want our 172.30.4.17 host to be the master of the
global group. We need to fi nd its UUID - it can be found in the output of the command
we executed above: 2b0cf0dd-58b3-11e6-9360-12ca057f857d

1 root@ip-172-30-4-185:~# mysqlfabric group add group-global
172.30.4.17:3306

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 90a3552f-7f4a-4d77-8da1-fdf05c89fd10 1 1 1

1 root@ip-172-30-4-185:~# mysqlfabric group add group-global
172.30.4.221:3306

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 cbe2579a-beef-4eb8-9fa2-d7d5f5e8e4e2 1 1 1

1 root@ip-172-30-4-185:~# mysqlfabric group lookup_servers
group-global

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 server_uuid address

status mode weight
6 ------------------------------------ ----------------- -----

---- --------- ------
7 2b0cf0dd-58b3-11e6-9360-12ca057f857d 172.30.4.17:3306 SEC-

ONDARY READ_ONLY 1.0
8 5aa4368f-58b3-11e6-beac-1262072f5c8d 172.30.4.221:3306 SEC-

ONDARY READ_ONLY 1.0

22

Once we know the UUID, we can tell MySQL Fabric to promote this particular host to
the master:

Let’s check the state of our global group:

Everything looks as we expect - our master has a status of “PRIMARY” and it’s in “READ_
WRITE” mode.

1 root@ip-172-30-4-185:~# mysqlfabric group promote
group-global --slave_id=2b0cf0dd-58b3-11e6-9360-12ca057f857d

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 4110e31f-c6f2-45bf-9266-64a0fe2b3b8d 1 1 1

1 root@ip-172-30-4-185:~# mysqlfabric group lookup_servers
group-global

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 server_uuid address

status mode weight
6 ------------------------------------ ----------------- -----

---- ---------- ------
7 2b0cf0dd-58b3-11e6-9360-12ca057f857d 172.30.4.17:3306

PRIMARY READ_WRITE 1.0
8 5aa4368f-58b3-11e6-beac-1262072f5c8d 172.30.4.221:3306 SEC-

ONDARY READ_ONLY 1.0

23

At this point it may happen that our “PRIMARY” host stops replicating from the
production hosts - you can check it by running SHOW SLAVE STATUS;. If that is the
case, you will have to execute CHANGE MASTER command once more:

4.2.4. Defi ne shard mappings
In the previous chapter, we set up replication between our production infrastructure and
the global group. We also setup the global group within MySQL Fabric. Next step would
be to decide how exactly we’d like to shard our application as we need to tell MySQL
Fabric which tables will be sharded and how. As we mentioned earlier, our “application”
is a sysbench with four tables created. Let’s assume that we will shard three of them
using “id” column. The fourth will not be sharded. Such setup may simulate, for
example, an application which has several tables connected in some relation using the
same column. Maybe it’s an e-commerce site which has large number of users. In such
case one table might contain user data like home address, shipping address, phone,
email address and so on. Another table would contain information about current and
previous transactions - who bought what and when? How much did he pay? Third table
could contain information about some social elements on the site - maybe the user
wrote some reviews of diff erent products we sell? Maybe she took part in a discussion
about new season sales? What’s important is that those tables are all connected
together using the “id” of the user and we may want to join them in a query. This is why
we want to keep all of the data of a given user together, in a single shard.

Keeping all of above in mind, we are going to shard the fi rst three tables (sbtest1,
sbtest2 and sbtest3) using the “id” column. We will be using a RANGE sharding scheme.

Once we create the sharding defi nition, we need to defi ne which tables we are going to
shard, and using which column.

1 mysql> CHANGE MASTER TO MASTER_HOST=’172.30.4.93’, MASTER_
USER=’rpl_user’, MASTER_PASSWORD=’replpass’, MASTER_AUTO_PO-
SITION=1;

2 Query OK, 0 rows affected, 2 warnings (0.00 sec)

1 mysql> START SLAVE;
2 Query OK, 0 rows affected (0.01 sec)

1 root@ip-172-30-4-185:~# mysqlfabric sharding create_defi ni-
tion RANGE group-global

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 2a8a62d4-af23-487b-bf38-c94993ebb88d 1 1 1

24

4.2.5. Creating shards
Having confi gured shard mappings, we need to create shards. Obviously, we need to
have MySQL hosts installed, but we also need to create them under MySQL Fabric. We’ll
start with two shards, splitting data in half. We need to repeat the process we went
through while creating our global group - fi rst we need to create groups:

1 root@ip-172-30-4-185:~# mysqlfabric sharding add_table 1
sbtest.sbtest1 id

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 16f0ad9d-a3db-4f56-a60e-9a7250cf78d1 1 1 1

1 root@ip-172-30-4-185:~# mysqlfabric sharding add_table 1
sbtest.sbtest2 id

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 20ac012a-2967-4a5b-be97-44196cfe8cbe 1 1 1

1 root@ip-172-30-4-185:~# mysqlfabric sharding add_table 1
sbtest.sbtest3 id

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 04c5499a-b938-4454-9cee-3a69f21bdd2e 1 1 1

1 root@ip-172-30-4-185:~# mysqlfabric group create shard-1
2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 5fb70a5e-1d5e-4550-9b93-5e759caa93b8 1 1 1

1 root@ip-172-30-4-185:~# mysqlfabric group create shard-2
2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 90acd29e-3c90-4d0b-87f2-5ab6be58c04c 1 1 1

25

Next, we need to build our shard hosts. We assume MySQL is running on them and all
grants have been executed, as we discussed earlier. If so, we can benefi t from MySQL
Fabric’s feature to provision them with data. MySQL Fabric uses mysqldump for that so
this may not be the most suitable option for large deployments - in that case, you can
use your own method to provision the servers with data.

We’ll start with the fi rst host. Please note that we use group-global hosts as a source (in
this case MySQL Fabric will pick one of them, it is also possible to tell it explicitly which
host you’d like to provision from by using --source_id fl ag and passing the UUID of a
source host).

Once provisioning completes, we need to add it to the shard-1:

And fi nally, we want this host to become a master in our shard - we need to promote it:

Then, our next host follows a similar path - we need to provision it and add it to
the shard. Please note, this time we used shard-1 group as a source of our data -
mysqldump will be executed on our master:

1 root@ip-172-30-4-185:~# mysqlfabric server clone group-glob-
al 172.30.4.138

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 43490d9c-5371-44e7-8eb8-abc079976a18 1 1 1

1 root@ip-172-30-4-185:~# mysqlfabric group add shard-1
172.30.4.138:3306

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 7b119581-f279-42f4-9c31-c56dd01e1b74 1 1 1

1 root@ip-172-30-4-185:~# mysqlfabric group promote shard-1
2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 95b9c34f-3268-4f18-995f-728b6ea963a3 1 1 1

26

Once this process completes, we can add the host to the shard.

Similar process has to be performed for the second shard. Steps are exactly the same so
we will skip our explanations. The console output will look as per below:

1 root@ip-172-30-4-185:~# mysqlfabric server clone shard-1
172.30.4.193

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 e146a6f2-6dde-40a0-ae69-817fd5033b12 1 1 1

1 root@ip-172-30-4-185:~# mysqlfabric group add shard-1
172.30.4.193:3306

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 53ccc8ca-3438-4a8d-ace1-5159eee68f03 1 1 1

1 root@ip-172-30-4-185:~# mysqlfabric server clone group-glob-
al 172.30.4.76

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 c68a8f89-ff4b-466b-9106-093e5cd38339 1 1 1

1 root@ip-172-30-4-185:~# mysqlfabric group add shard-2
172.30.4.76:3306

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 28658ea0-9bd5-48a1-90ef-f749e326fec1 1 1 1

1 root@ip-172-30-4-185:~# mysqlfabric group promote shard-2
2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 374035cc-479c-425e-beb7-7bb468a9c220 1 1 1

27

Now, it might be a good idea to activate failure detection in our groups. MySQL Fabric
will start to monitor status of MySQL and replication and it will trigger slave promotions
if needed. We will activate failure detection in both shards and our global-group.

Now it’s time to defi ne what data will be stored in which shard:

1 root@ip-172-30-4-185:~# mysqlfabric server clone shard-2
172.30.4.30

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 6c684e1f-7fb4-43b1-8513-5d4757fe7a8f 1 1 1

1 root@ip-172-30-4-185:~# mysqlfabric group add shard-2
172.30.4.30:3306

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 90618548-e6d0-4f73-aea0-95850fd4496c 1 1 1

1 root@ip-172-30-4-185:~# mysqlfabric group activate shard-1
2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 3c40b110-6668-4f75-8134-a3788d5a166a 1 1 1

1 root@ip-172-30-4-185:~# mysqlfabric group activate shard-2
2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 08c81f60-ab28-4e52-89ac-9c4bbad435c3 1 1 1

1 root@ip-172-30-4-185:~# mysqlfabric group activate
group-global

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 5b2d5a08-367a-44d6-a7b0-7459d6dbb718 1 1 1

28

At this point we have two shards defi ned but each of them contains the full data set. We
cannot change it, at this moment, because we rely on replication to keep our MySQL
Fabric setup in sync with production. If we’d just remove some data in the sharded
tables, replication would fail. We need to switch our traffi c to the MySQL Fabric setup
fi rst before we can do that. To accomplish this, we need to install and confi gure MySQL
Router which will maintain our nodes’ directory and expose them to ProxySQL. We will
also have to modify ProxySQL routing to route traffi c to relevant shards.

4.3. Setting up MySQL Router

4.3.1. Installation of MySQL Router
Installation of MySQL Router is rather simple. You need to grab the following deb
package (or its RPM equivalent) to setup MySQL repository and install it:

While doing so, please make sure you pick MySQL Tools & Connectors to be enabled.
Then, all we need to do is to refresh apt cache and install the package.

4.3.2. Confi guring MySQL Router
As we mentioned above, our plan is to confi gure MySQL Router to expose our shards
to ProxySQL. We also mentioned earlier that MySQL Router works on per “high
availability group” basis. This means, in practice, that each of our shards will require
an entry in MySQL Router confi guration (we will actually use two, one for read-only
and one for read-write traffi c). We will then setup ProxySQL to route relevant queries
to their destination shard. This also means that, when a change in sharding schema is
made, MySQL Router’s confi guration will have to be added. One may ask - why bother
using MySQL Router when we have to handle another proxy too? It actually makes
sense in our case. Please keep in mind that, most of the time, data is not resharded
often. On the other hand, servers go up and down much more frequently. You may

1 root@ip-172-30-4-185:~# mysqlfabric sharding add_shard 1
“shard-1/1, shard-2/500000” --state=ENABLED

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 0886b7ff-0879-4741-86ba-f7136b4444ca 1 1 1

1 root@ip-172-30-4-5:~# wget http://dev.mysql.com/get/mysql-
apt-confi g_0.7.3-1_all.deb

1 root@ip-172-30-4-5:~# dpkg -i mysql-apt-confi g_0.7.3-1_all.
deb

1 root@ip-172-30-4-5:~# apt-get update
2 root@ip-172-30-4-5:~# apt-get install mysql-router

29

be adding new hosts to the shard, you may be moving a shard to a new set of hosts,
you may be promoting a slave to act as a master for a given shard. Those changes will
be well hidden behind the MySQL Router and we won’t have to change ProxySQL’s
confi g frequently to follow the topology changes. Of course, it all depends on your
particular setup and you may fi nd it more effi cient to skip MySQL Router and focus on
automating ProxySQL’s confi guration changes.

Back to the confi guration - MySQL Router’s confi guration fi le is located by default (on
Ubuntu 14.04) in /etc/mysqlrouter/mysqlrouter.ini

At this point we have three groups - one for our global-group and two for shards. For
each of them we will use two entries - one for read-only access and one for read-write
access. MySQL Router will route them to hosts in a “SECONDARY” state and “PRIMARY”,
respectively.

1 [DEFAULT]
2 logging_folder = /var/log/mysqlrouter/
3 plugin_folder = /usr/lib/x86_64-linux-gnu/mysqlrouter
4 runtime_folder = /var/run/mysqlrouter
5 confi g_folder = /etc/mysqlrouter
6
7 [logger]
8 level = info
9
10 # If no plugin is confi gured which starts a service, keep-

alive
11 # will make sure MySQL Router will not immediately exit. It

is
12 # safe to remove once Router is confi gured.
13 [keepalive]
14 interval = 60
15
16 [fabric_cache:sysbenchapp]
17 address = 172.30.4.185
18 user = admin
19
20 [routing:globalro]
21 bind_address = 172.30.4.5:9901
22 destinations = fabric+cache://sysbenchapp/group/group-glob-

al/
23 mode = read-only
24
25 [routing:globalrw]
26 bind_address = 172.30.4.5:9902
27 destinations = fabric+cache://sysbenchapp/group/group-glob-

al/
28 mode = read-write
29
30 [routing:shard1ro]
31 bind_address = 172.30.4.5:9903
32 destinations = fabric+cache://sysbenchapp/group/shard-1/
33 mode = read-only

30

At the time of writing, MySQL Router was in version 2.0.3 and it was not possible to
set MySQL Fabric password in the confi guration fi le. It makes sense from the security
point of view, but, unfortunately, init scripts didn’t allow for proper password setup and
the connection to MySQL Fabric failed for us. We had to revert to starting mysqlrouter
manually, in the screen session:

This fi nally allowed MySQL Router to connect to MySQL Fabric and reach the Fabric
Cache.

4.4. Confi guring ProxySQL for sharding

4.4.1. Confi guring hostgroups
In this chapter we are going to go through the confi guration process of the ProxySQL
which will result in traffi c being routed to the correct shards. We are going to use
diff erent query rules which will check values of the sharding key and based on those,
will route our traffi c to diff erent hostgroups.

At fi rst, let’s create new hostgroups - we are going to add all six ports exposed by
MySQL Router. ProxySQL will just forward the traffi c there and MySQL Router’s task will
be to route queries to the backend MySQL hosts.

First, default-group:

34
35 [routing:shard1rw]
36 bind_address = 172.30.4.5:9904
37 destinations = fabric+cache://sysbenchapp/group/shard-1/
38 mode = read-write
39
40 [routing:shard2ro]
41 bind_address = 172.30.4.5:9905
42 destinations = fabric+cache://sysbenchapp/group/shard-2/
43 mode = read-only
44
45 [routing:shard2rw]
46 bind_address = 172.30.4.5:9906
47 destinations = fabric+cache://sysbenchapp/group/shard-2/
48 mode = read-write

1 root@ip-172-30-4-5:~# mysqlrouter
2 Logging to /var/log/mysqlrouter/mysqlrouter.log
3 Password for [fabric_cache:sysbenchapp], user admin:

1 mysql> insert into mysql_servers (hostgroup_id, hostname,
port, max_connections, max_replication_lag) values (91,
‘172.30.4.5’, 9901, 1000, 0);

2 Query OK, 1 row affected (0.00 sec)

31

Then, shard-1:

Followed by shard-2:

Finally, we load the confi g to runtime and save it to persistent storage.

4.4.2. Confi guring query rules
Next, we need to defi ne query rules which will match incoming queries and route them
to the correct shard. To accomplish that, it’d be nice to have insight into what queries
are executed on the system. There are numerous ways to do that, including enabling
slow query log or capturing a traffi c using tcpdump but, as we already use ProxySQL,
we can use one of its features and check the list of queries executed through ProxySQL.
One of its stats tables - stats_mysql_query_digest, contains data about diff erent
executed queries. We are interested in their digests:

1 mysql> insert into mysql_servers (hostgroup_id, hostname,
port, max_connections, max_replication_lag) values (92,
‘172.30.4.5’, 9902, 1000, 0);

2 Query OK, 1 row affected (0.00 sec)

1 mysql> insert into mysql_servers (hostgroup_id, hostname,
port, max_connections, max_replication_lag) values (11,
‘172.30.4.5’, 9903, 1000, 0);

2 Query OK, 1 row affected (0.00 sec)

1 mysql> insert into mysql_servers (hostgroup_id, hostname,
port, max_connections, max_replication_lag) values (12,
‘172.30.4.5’, 9904, 1000, 0);

2 Query OK, 1 row affected (0.00 sec)

1 mysql> insert into mysql_servers (hostgroup_id, hostname,
port, max_connections, max_replication_lag) values (21,
‘172.30.4.5’, 9905, 1000, 0)

2 Query OK, 1 row affected (0.00 sec)

1 mysql> insert into mysql_servers (hostgroup_id, hostname,
port, max_connections, max_replication_lag) values (22,
‘172.30.4.5’, 9906, 1000, 0);

2 Query OK, 1 row affected (0.00 sec)

1 mysql> LOAD MYSQL SERVERS TO RUNTIME;
2 Query OK, 0 rows affected (0.00 sec)

1 mysql> SAVE MYSQL SERVERS TO DISK;
2 Query OK, 0 rows affected (0.18 sec)

32

As can be seen, every query uses our sharding key (id) to locate rows - this is the ideal
case for us and we can easily route this traffi c based on a value of that column. Let’s
remind our sharding confi guration - tables sbtest1-3 are sharded in two shards, values
1-499999 are located in shard1 (defi ned as hostgroups 11 - ro access and 12 - rw access
in ProxySQL), remaining values (500000 and more) are located in shard2 (hostgroup
21 for read only and 22 for read-write access in ProxySQL). We also have table sbtest4,
which is not sharded and traffi c should be routed to the global group (hostgroups 91
for read-only and 92 for read-write traffi c).

Based on this data we are going to insert a couple of mysql_query_rules which will
catch queries and route them to the relevant hostgroups. ProxySQL allows to use regex
patterns to match queries (supported syntax can be found here: https://github.com/
google/re2/wiki/Syntax). Let’s start with fi rst shard. A regex of:

should match values 1-499999. We’ll use it to route SELECT queries:

1 mysql> select digest_text from stats_mysql_query_digest;
2 +---+
3 | digest_text |
4 +---+
5 | INSERT INTO sbtest3 (id, k, c, pad) VALUES (?, ?, ?, ?) |
6 | DELETE FROM sbtest3 WHERE id=? |
7 | UPDATE sbtest3 SET c=? WHERE id=? |
8 | SELECT c FROM sbtest3 WHERE id=? |
9 | SELECT c FROM sbtest1 WHERE id=? |
10 | INSERT INTO sbtest4 (id, k, c, pad) VALUES (?, ?, ?, ?) |
11 | DELETE FROM sbtest4 WHERE id=? |
12 | UPDATE sbtest4 SET c=? WHERE id=? |
13 | SELECT c FROM sbtest4 WHERE id=? |
14 | INSERT INTO sbtest1 (id, k, c, pad) VALUES (?, ?, ?, ?) |
15 | SELECT c FROM sbtest2 WHERE id=? |
16 | INSERT INTO sbtest2 (id, k, c, pad) VALUES (?, ?, ?, ?) |
17 | DELETE FROM sbtest1 WHERE id=? |
18 | DELETE FROM sbtest2 WHERE id=? |
19 | UPDATE sbtest1 SET c=? WHERE id=? |
20 | UPDATE sbtest4 SET k=k+? WHERE id=? |
21 | UPDATE sbtest2 SET c=? WHERE id=? |
22 | UPDATE sbtest3 SET k=k+? WHERE id=? |
23 | UPDATE sbtest1 SET k=k+? WHERE id=? |
24 | UPDATE sbtest2 SET k=k+? WHERE id=? |
25 +---+
26 20 rows in set (0.00 sec)

1 [1-9]$|[1-9][0-9]{1,4}$|[1-4][0-9]{5}

1 mysql> INSERT INTO mysql_query_rules (active, match_pattern,
destination_hostgroup, apply) VALUES (0, “^SELECT .* FROM
sbtest[1-3] WHERE id=([1-9]$|[1-9][0-9]{1,4}$|[1-4][0-9]
{5}$)”, 11, 1);

2 Query OK, 1 row affected (0.00 sec)

https://github.com/google/re2/wiki/Syntax

33

Couple of comments - we set all our rules to be not active (active=0) because we
defi nitely don’t want them to be executed before a cutover. Match pattern should be
very strict - it has to match precisely queries you want to catch. Make no shortcuts
here as you may end up routing your traffi c incorrectly. Each rule will have apply=1
- this means that it won’t be tested by any further query rule. Of course, destination_
hostgroup has to be set correctly, depending on how you confi gured MySQL Router
ports in ProxySQL hostgroups.

After SELECT, we need to handle DML’s:

Once we complete setting shard1, we need to setup rules for shard2 - rows with id
greater or equal to 500000. Following regex will match those numbers:

1 mysql> INSERT INTO mysql_query_rules (active, match_pat-
tern, destination_hostgroup, apply) VALUES (0, “^UPDATE
sbtest[1-3].* WHERE id=([1-9]$|[1-9][0-9]{1,4}$|[1-4][0-9]
{5}$)”, 12, 1);

2 Query OK, 1 row affected (0.00 sec)

1 mysql> INSERT INTO mysql_query_rules (active, match_pat-
tern, destination_hostgroup, apply) VALUES (0, “^DELETE FROM
sbtest[1-3].* WHERE id=([1-9]$|[1-9][0-9]{1,4}$|[1-4][0-9]
{5}$)”, 12, 1);

2 Query OK, 1 row affected (0.00 sec)

1 mysql> INSERT INTO mysql_query_rules (active, match_pat-
tern, destination_hostgroup, apply) VALUES (0, “^INSERT INTO
sbtest[1-3] \(id, k, c, pad\) VALUES \(([1-9],|[1-9][0-9]
{1,4},|[1-4][0-9]{5},).*\)$”, 12, 1);

2 Query OK, 1 row affected (0.00 sec)

1 mysql> INSERT INTO mysql_query_rules (active, match_pattern,
destination_hostgroup, apply) VALUES (0, “^SELECT .* FROM
sbtest[1-3] WHERE id=([5-9][0-9]{5}|[1-9]{6,}$)”, 21, 1);

2 Query OK, 1 row affected (0.00 sec)

1 mysql> INSERT INTO mysql_query_rules (active, match_pat-
tern, destination_hostgroup, apply) VALUES (0, “^UPDATE
sbtest[1-3].* WHERE id=([5-9][0-9]{5}|[1-9]{6,}$)”, 22, 1);

2 Query OK, 1 row affected (0.00 sec)

1 mysql> INSERT INTO mysql_query_rules (active, match_pat-
tern, destination_hostgroup, apply) VALUES (0, “^DELETE FROM
sbtest[1-3].* WHERE id=([5-9][0-9]{5}|[1-9]{6,}$)”, 22, 1);

2 Query OK, 1 row affected (0.00 sec)

1 mysql> INSERT INTO mysql_query_rules (active, match_pat-
tern, destination_hostgroup, apply) VALUES (0, “^INSERT INTO
sbtest[1-3] \(id, k, c, pad\) VALUES \(([5-9][0-9]{5}|[1-9]
{6,},).*\)$”, 22, 1);

2 Query OK, 1 row affected (0.00 sec)

34

We need also to add rules for queries which hit our global table, sbtest4 - currently
we rely on the default hostgroup for our application user. Those rules require a bit of
explanation. What we’ll do here is to match all queries heading to sbtest4 table and
send them to hostgroup 92 (read-write access to our global group). We don’t fi nish our
matching, though - next two rules pick SELECT and SELECT … FOR UPDATE queries and
route them to the correct hostgroups:

Finally, we save this confi guration to disk.

Please note, we set only exceptions which have to be routed to particular shards.
Remaining of queries will be routed to the global group using query rules which,
currently, are used to route traffi c to our production setup. We will just have to change
their hostgroups at the time of cutover.

4.4.3. Testing of query rules
It is important to make sure your query rules are correct and work properly. To ensure
this, you have to test them. There are a couple of approaches to test query rules in
ProxySQL. In our case, there was not that many queries we had to take care of, and
one acceptable solution was to create a bogus, empty table (we called it sbtest5) with a
schema of production tables - we then created rules related to this particular table and
went through every query and shard range to make sure data has been looked up or
modifi ed in the correct shard.

4.5. Cutover process

4.5.1. Preparations
In order to perform a cutover we need to execute two steps.

1 mysql> INSERT INTO mysql_query_rules (active, match_pattern,
destination_hostgroup, apply) VALUES (0, “^.*sbtest4.*”, 92,
0);

2 Query OK, 1 row affected (0.00 sec)

1 mysql> INSERT INTO mysql_query_rules (active, match_pat-
tern, destination_hostgroup, apply) VALUES (0, “^SE-
LECT.*sbtest4.*”, 91, 0);

2 Query OK, 1 row affected (0.00 sec)

1 mysql> INSERT INTO mysql_query_rules (active, match_pat-
tern, destination_hostgroup, apply) VALUES (0, “^SE-
LECT.*sbtest4.*FOR UPDATE”, 92, 1);

2 Query OK, 1 row affected (0.00 sec)

1 mysql> SAVE MYSQL QUERY RULES TO DISK;
2 Query OK, 0 rows affected (0.10 sec)

35

1. We need to disable traffi c routing to current production systems
2. We need to activate query rules which will route traffi c to our sharding setup

With ProxySQL, as long as there are no long running transactions, you can stop sending
traffi c to a hostgroup and reroute it to some diff erent location without any error
showing up in the application. We are going to rely on this behavior.

For starters, we need to verify what changes we need to make in the query rules. Let’s
check how they look like:

1 mysql> select rule_id, active, match_pattern, destination_
hostgroup, apply from mysql_query_rules\G

2 *************************** 1. row

3 rule_id: 1
4 active: 1
5 match_pattern: ^SELECT.*
6 destination_hostgroup: 1
7 apply: 0
8 *************************** 2. row

9 rule_id: 2
10 active: 1
11 match_pattern: SELECT.*FOR UPDATE
12 destination_hostgroup: 0
13 apply: 0
14 *************************** 3. row

15 rule_id: 145
16 active: 0
17 match_pattern: ^SELECT .* FROM sbtest[1-3] WHERE

id=([1-9]$|[1-9][0-9]{1,4}$|[1-4][0-9]{5}$)
18 destination_hostgroup: 11
19 apply: 1
20 *************************** 4. row

21 rule_id: 146
22 active: 0
23 match_pattern: ^UPDATE sbtest[1-3].* WHERE id=([1-

9]$|[1-9][0-9]{1,4}$|[1-4][0-9]{5}$)
24 destination_hostgroup: 12
25 apply: 1
26 *************************** 5. row

27 rule_id: 147
28 active: 0
29 match_pattern: ^DELETE FROM sbtest[1-3].* WHERE

id=([1-9]$|[1-9][0-9]{1,4}$|[1-4][0-9]{5}$)
30 destination_hostgroup: 12
31 apply: 1
32 *************************** 6. row

36

33 rule_id: 148
34 active: 0
35 match_pattern: ^INSERT INTO sbtest[1-3] \(id, k, c,

pad\) VALUES \(([1-9],|[1-9][0-9]{1,4},|[1-4][0-9]{5},).*\)$
36 destination_hostgroup: 12
37 apply: 1
38 *************************** 7. row

39 rule_id: 149
40 active: 0
41 match_pattern: ^SELECT .* FROM sbtest[1-3] WHERE

id=([5-9][0-9]{5}|[1-9]{6,}$)
42 destination_hostgroup: 21
43 apply: 1
44 *************************** 8. row

45 rule_id: 150
46 active: 0
47 match_pattern: ^UPDATE sbtest[1-3].* WHERE id=([5-9]

[0-9]{5}|[1-9]{6,}$)
48 destination_hostgroup: 22
49 apply: 1
50 *************************** 9. row

51 rule_id: 151
52 active: 0
53 match_pattern: ^DELETE FROM sbtest[1-3].* WHERE

id=([5-9][0-9]{5}|[1-9]{6,}$)
54 destination_hostgroup: 22
55 apply: 1
56 *************************** 10. row

57 rule_id: 152
58 active: 0
59 match_pattern: ^INSERT INTO sbtest[1-3] \(id, k, c,

pad\) VALUES \(([5-9][0-9]{5}|[1-9]{6,},).*\)$
60 destination_hostgroup: 22
61 apply: 1
62 *************************** 11. row

63 rule_id: 153
64 active: 0
65 match_pattern: ^.*sbtest4.*
66 destination_hostgroup: 92
67 apply: 0
68 *************************** 12. row

69 rule_id: 154
70 active: 0

37

It looks like we have to disable rules 1 and 2 and activate remaining rules (to route traffi c
to the correct shard or global group).

We also want to verify that our MySQL Fabric high availability groups work correctly:

71 match_pattern: ^SELECT.*sbtest4.*
72 destination_hostgroup: 91
73 apply: 0
74 *************************** 13. row

75 rule_id: 155
76 active: 0
77 match_pattern: ^SELECT.*sbtest4.*FOR UPDATE
78 destination_hostgroup: 92
79 apply: 1
80 13 rows in set (0.00 sec)

1 root@ip-172-30-4-185:~# mysqlfabric group lookup_servers
group-global

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 server_uuid address

status mode weight
6 ------------------------------------ ----------------- -----

---- ---------- ------
7 2b0cf0dd-58b3-11e6-9360-12ca057f857d 172.30.4.17:3306

PRIMARY READ_WRITE 1.0
8 5aa4368f-58b3-11e6-beac-1262072f5c8d 172.30.4.221:3306 SEC-

ONDARY READ_ONLY 1.0

1 root@ip-172-30-4-185:~# mysqlfabric group lookup_servers
shard-1

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 server_uuid address

status mode weight
6 ------------------------------------ ----------------- -----

---- ---------- ------
7 973fe4fd-5803-11e6-b421-12e1054e95cf 172.30.4.138:3306

PRIMARY READ_WRITE 1.0
8 b879e14a-5980-11e6-87f7-12a36f4a0473 172.30.4.193:3306 SEC-

ONDARY READ_ONLY 1.0

38

Everything seems to be working perfectly, we are ready for the cutover.

4.5.2. Cutover
When logged into ProxySQL’s admin interface, we need to execute the following query:

Cutover happened at the moment we loaded the updated query rules to runtime.

4.5.3. Cleanup
Until now both shards contain the full data set. We want to clear not needed data, to
save disk space. This process is very simple in MySQL Fabric:

1 root@ip-172-30-4-185:~# mysqlfabric group lookup_servers
shard-2

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 server_uuid address

status mode weight
6 ------------------------------------ ---------------- ------

--- ---------- ------
7 1217822f-5805-11e6-be31-12fe58b52243 172.30.4.76:3306 PRI-

MARY READ_WRITE 1.0
8 60214a02-5805-11e6-820a-126c973d658b 172.30.4.30:3306 SEC-

ONDARY READ_ONLY 1.0

1 mysql> UPDATE mysql_query_rules SET active=0 WHERE rule_id
IN (1, 2);

2 Query OK, 2 rows affected (0.00 sec)

1 mysql> UPDATE mysql_query_rules SET active=1 WHERE rule_id
NOT IN (1, 2);

2 Query OK, 11 rows affected (0.00 sec)

1 mysql> LOAD MYSQL QUERY RULES TO RUNTIME;
2 Query OK, 0 rows affected (0.00 sec)

1 mysql> SAVE MYSQL QUERY RULES TO DISK;
2 Query OK, 0 rows affected (0.09 sec)

1 root@ip-172-30-4-185:~# mysqlfabric sharding prune_shard
sbtest.sbtest1

2 ^@Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 e876d4a2-eff3-4191-8547-403abf3975c3 1 1 1

39

This particular command clears unneeded data in both shards, completing the
migration into sharded environment.

4.6. Typical operations in MySQL Fabric sharded environment
In the previous chapter we accomplished migration into a sharded environment using
MySQL Fabric. We’d like to show a couple of typical operations you may need to
execute in a sharded setup.

4.6.1. Add node to shard
Sometimes, a particular shard may become hot and the current set of servers is not
large enough to handle the traffi c. There are a couple of options to pick from - we
could split the shard into two, but, as long as write load is acceptable, we can scale
reads by adding another slave into the shard. This process is really simple in MySQL
Fabric and it involves three steps.

First, we need to install MySQL on our new host, set correct server_id and make sure all
grants required by MySQL Fabric are there. We covered this bit in chapter “4.2.2. Initial
setup” where we discussed setting up MySQL Fabric therefore we’ll skip it here.

Second, when all MySQL Fabric users have been added to the new host, we need to
clone data from a shard:

Next step will be to add it to the shard, but unfortunately, there may be one more thing
to do - when cloning, all data has been transferred to our new host, including “mysql”
schema. This may lead to problems with replication because MySQL is expecting to use
non-existing relay logs. In case you will run into problem like that, you may need to
clear it before you can proceed with setting up replication.

Now we can add the host to a shard group:

1 root@ip-172-30-4-185:~# mysqlfabric server clone shard-1
172.30.4.165

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 840d1701-ec8c-4f3d-9cd4-744e8247b73b 1 1 1

1 mysql> RESET SLAVE;
2 Query OK, 0 rows affected (0.00 sec)

40

And verify that everything is ok:

This is enough - traffi c will start to hit our new host.

4.6.2. Remove node from a shard
After adding nodes to a shard we may need to remove some of them. Maybe
you’ve added faster nodes and you want to, step by step, replace old hosts with new
hardware? This is easy in MySQL Fabric. You need to fi nd the UUID of a node you want
to remove:

1 root@ip-172-30-4-185:~# mysqlfabric group add shard-1
172.30.4.165:3306

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 e3de8c91-16a1-49a6-8f7c-f54bc3a45fdc 1 1 1

1 root@ip-172-30-4-185:~# mysqlfabric group lookup_servers
shard-1

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 server_uuid address

status mode weight
6 ------------------------------------ ----------------- -----

---- ---------- ------
7 65d19a41-5807-11e6-94ad-1236ea811dcd 172.30.4.165:3306 SEC-

ONDARY READ_ONLY 1.0
8 973fe4fd-5803-11e6-b421-12e1054e95cf 172.30.4.138:3306

PRIMARY READ_WRITE 1.0
9 b879e14a-5980-11e6-87f7-12a36f4a0473 172.30.4.193:3306 SEC-

ONDARY READ_ONLY 1.0

1 root@ip-172-30-4-185:~# mysqlfabric group lookup_servers
shard-1

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 server_uuid address

status mode weight
6 ------------------------------------ ----------------- -----

---- ---------- ------
7 65d19a41-5807-11e6-94ad-1236ea811dcd 172.30.4.165:3306 SEC-

ONDARY READ_ONLY 1.0
8 973fe4fd-5803-11e6-b421-12e1054e95cf 172.30.4.138:3306

PRIMARY READ_WRITE 1.0
9 b879e14a-5980-11e6-87f7-12a36f4a0473 172.30.4.193:3306 SEC-

ONDARY READ_ONLY 1.0

41

Next, you just remove it:

Let’s verify if we succeeded:

Seems like we did succeed.

4.6.3. Promote a secondary node in a shard
Let’s say we added a new node to the shard and then we want to promote it to a
master. It’s a matter of a single command:

We need to verify the result:

1 root@ip-172-30-4-185:~# mysqlfabric group remove shard-1
b879e14a-5980-11e6-87f7-12a36f4a0473

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 fbe3109b-9f55-40af-9ccf-e32686efe5a6 1 1 1

1 root@ip-172-30-4-185:~# mysqlfabric group lookup_servers
shard-1

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 server_uuid address

status mode weight
6 ------------------------------------ ----------------- -----

---- ---------- ------
7 65d19a41-5807-11e6-94ad-1236ea811dcd 172.30.4.165:3306 SEC-

ONDARY READ_ONLY 1.0
8 973fe4fd-5803-11e6-b421-12e1054e95cf 172.30.4.138:3306

PRIMARY READ_WRITE 1.0

1 root@ip-172-30-4-185:~# mysqlfabric group promote shard-1
2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 25b87719-0c44-4a0c-a339-b68e75169750 1 1 1

42

If we had more than one “secondary” node in the shard, we can point MySQL Fabric to
promote the exact node we want using “--slave_id=UUID” parameter. Please note that
promotion requires a slight downtime so your application may report database errors
for the duration of the switchover (usually just a few seconds).

4.6.4. Move shard to a new high availability group
We’ve discussed adding hosts to the high availability hostgroup but sometimes it may
be more effi cient to move a whole shard to a new high availability hostgroup. Let’s take
a look how we could accomplish that in our setup.

First of all, we need to create a new high availability group:

Then we need to add hosts to it:

1 root@ip-172-30-4-185:~# mysqlfabric group lookup_servers
shard-1

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 server_uuid address

status mode weight
6 ------------------------------------ ----------------- -----

---- ---------- ------
7 65d19a41-5807-11e6-94ad-1236ea811dcd 172.30.4.165:3306

PRIMARY READ_WRITE 1.0
8 973fe4fd-5803-11e6-b421-12e1054e95cf 172.30.4.138:3306 SEC-

ONDARY READ_ONLY 1.0

1 root@ip-172-30-4-185:~# mysqlfabric group create shard-1-new
2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 2ac0b977-538b-40d8-9154-1d92e6f6a259 1 1 1

1 root@ip-172-30-4-185:~# mysqlfabric group add shard-1-new
172.30.4.165:3306

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 90bdc7b1-f203-4951-bd48-238c2f4fa208 1 1 1

43

Next, we need to promote one of hosts in this group to master:

Let’s verify that everything is ok:

Now, let’s stop for a moment and discuss next steps. What we need to do is to execute
“move_shard” command which would move our shard to a new high availability
group (in our case: “shard-1-new”. This leads to a serious problem - in MySQL Router
confi guration, where we defi ne backends, we use the high availability group name:

If we want to move our shard to a new group, a new backend has to be created. This
alone is not a problem as we can create it beforehand. You also have to change routing
settings in ProxySQL - to route the traffi c to a new MySQL Router port. Again, this is
not a big problem. The main problem is that the process of moving data is not atomic
and you can’t easily time when routing changes should happen. This, virtually, forces
you to take a downtime for the whole duration of the “shard_move” command. Most of

1 root@ip-172-30-4-185:~# mysqlfabric group add shard-1-new
172.30.4.118:3306

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 02338bc5-1731-44a6-960a-1078de4313d1 1 1 1

1 root@ip-172-30-4-185:~# mysqlfabric group promote shard-1-
new

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 77bd998f-5b88-445f-8995-6946b512dc20 1 1 1

1 root@ip-172-30-4-185:~# mysqlfabric group lookup_servers
shard-1-new

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 server_uuid address

status mode weight
6 ------------------------------------ ----------------- -----

---- ---------- ------
7 65d19a41-5807-11e6-94ad-1236ea811dcd 172.30.4.165:3306 SEC-

ONDARY READ_ONLY 1.0
8 eb594f94-5807-11e6-a381-12200a8209c9 172.30.4.118:3306

PRIMARY READ_WRITE 1.0

1 [routing:shard1rw]
2 bind_address = 172.30.4.5:9904
3 destinations = fabric+cache://sysbenchapp/group/shard-1/
4 mode = read-write

44

the time it will be not feasible and you’ll rather add new hosts to the existing group, but
we still wanted to cover this option to show it to you. There’s also another workaround
which would include building a set of custom scripts which will perform a process for
you. We will show an example of such approach in the next chapter.

Move command looks like below:

Number “13” is the id of a shard you want to move while “shard-1-new” is the name of a
high availability group we want it to move to. The best way to verify what id is assigned
to which shard would be to execute the following SQL on the MySQL Fabric database:

Once the move completes, you either need to create new hostgroups in ProxySQL or
you can just edit the MySQL Router confi guration and change the old high availability
group name to the new one. As you are taking a downtime anyway, just do whatever
will be easier for you.

Finally, we can verify that our shard has indeed been moved to the new set of hosts:

1 root@ip-172-30-4-185:~# mysqlfabric sharding move_shard 13
shard-1-new

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 d7343aa1-657f-4019-9820-da5702a57a7c 1 1 1

1 mysql> select * from mysql_fabric.shards;
2 +----------+----------+---------+
3 | shard_id | group_id | state |
4 +----------+----------+---------+
5 | 13 | shard-1 | ENABLED |
6 | 14 | shard-2 | ENABLED |
7 +----------+----------+---------+
8 2 rows in set (0.00 sec)

1 root@ip-172-30-4-185:~# mysqlfabric sharding lookup_servers
sbtest.sbtest1 1

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 server_uuid address

status mode weight
6 ------------------------------------ ----------------- -----

---- ---------- ------
7 65d19a41-5807-11e6-94ad-1236ea811dcd 172.30.4.165:3306 SEC-

ONDARY READ_ONLY 1.0
8 eb594f94-5807-11e6-a381-12200a8209c9 172.30.4.118:3306

PRIMARY READ_WRITE 1.0

45

Here, value “1” is a sharding key which we want to lookup - the output means that the
row where the sharding key has a value of “1” in sbtest.sbtest1 table is stored on those
two hosts.

4.6.5. Splitting the shard
At some point it may happen that you will need to split the shard - maybe the load on
the shard became too high or maybe it has grown too large on disk and outgrown the
shard’s hardware. One way or the other, you need to create a new shard and reroute
some of the traffi c there.

As mentioned in the previous chapter, we are going to use an approach of developing a
custom script to execute this operation without impact to the application.

The split process executed from the CLI is done in couple of steps:

1. Create a new shard
2. Add a host to the new shard
3. Provision that host using data from the shard which we will split
4. Setup replication between the new host and the master of the old shard
5. Stop the replication when all data has been transferred and the new host has

caught up
6. Setup replication between the new host and the master of the global group
7. Prune unneeded data from both shards

If we’d stick to this process, we’d face similar problem as with moving the shard - we
need to accept downtime for the duration of the data transfer and replication catching
up, or we will risk data being written to the old shard. This is because steps 3-6 are
executed by a single CLI command and the user does not have any control or hooks to
change the routing to the new shard at the exact time the new shard starts to replicate
from a global group.

MySQL Fabric, luckily, gives the user the ability to execute CLI commands in a way they
won’t interfere with data - they will just make a change in the MySQL Fabric internal
database. We are talking now about “--update_only” option which can be used with
most of the CLI calls. Let’s see how we can go around the limitations of our setup.

We are going to assume that the split will happen around the value of 800000 - it
means that it’ll happen in the second shard.

We have to start with creating a new high availability group for our third shard.

Next, we need to prepare a host and then add it to the third shard. We will use data
from shard-2 as our shard-3 will eventually use a subset of shard-2’s data.

1 root@ip-172-30-4-185:~# mysqlfabric group create shard-3
2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 3e8422de-f6f0-4c29-8873-2e93bf2ab27c 1 1 1

46

Finally, we need to promote our new host to become a PRIMARY in shard-3:

Once we set up a shard in MySQL Fabric, we need to make sure it is available in MySQL
Router:

We’ve concluded our preparations and now it’s time to execute our script. Please note
this is not a production-ready script - it’s more like a proof of concept which does what
it should but doesn’t implement any safety features which would be a requirement for a
production script.

We will start with setting some of variables. The script accepts two parameters: id of a
source shard and name of the target high availability group. We also hardcoded some
usernames and passwords.

1 root@ip-172-30-4-185:~# mysqlfabric server clone shard-2
172.30.4.118

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 067fb096-3950-4891-9f0b-a8d3d604a7d5 1 1 1

1 root@ip-172-30-4-185:~# mysqlfabric group add shard-3
172.30.4.118:3306

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 47cd8261-f9d1-4adc-91bf-aa8f5d35059c 1 1 1

1 root@ip-172-30-4-185:~# mysqlfabric group promote shard-3
2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 841c8f93-a696-405c-bc82-592c79ed986e 1 1 1

1 [routing:shard3ro]
2 bind_address = 172.30.4.5:9907
3 destinations = fabric+cache://sysbenchapp/group/shard-3/
4 mode = read-only

1 [routing:shard3rw]
2 bind_address = 172.30.4.5:9908
3 destinations = fabric+cache://sysbenchapp/group/shard-3/
4 mode = read-write

47

Next, we collect additional information required for the script. One step may require a
bit of explanation - we want to collect the current uuid of the shard-3 host as we will
reprovision that host. Should the uuid change, MySQL Fabric will complain about it.

Now, reprovisioning using xtrabackup:

1 #!/bin/bash
2
3 org_shard_id=$1
4 dest_shard_name=$2
5 fabric_host=’172.30.4.185’
6 fabric_user=’fabric_store’
7 fabric_pass=’pass’
8 repl_user=’rpl_user’
9 repl_pass=’replpass’
10 fabric_server_user=’fabric_server’
11 fabric_server_pass=’pass’
12 global_grp_name=’group-global’

1 org_shard_name=$(mysql -u${fabric_user} -p${fabric_pass} -h
${fabric_host} -e “select group_id from mysql_fabric.shards
WHERE shard_id=${org_shard_id}” | grep -v group_id)

2
3 org_ip=$(mysqlfabric group lookup_servers ${org_shard_name}

| grep PRIMARY | awk ‘{print $2}’ | cut -d : -f 1)
4 echo $org_ip
5
6 dest_ip=$(mysqlfabric group lookup_servers ${dest_shard_

name} | grep PRIMARY | awk ‘{print $2}’ | cut -d : -f 1)
7 echo $dest_ip
8
9 global_grp_ip=$(mysqlfabric group lookup_servers ${global_

grp_name} | grep PRIMARY | awk ‘{print $2}’ | cut -d : -f 1)
10 echo ${global_grp_ip}
11
12 dest_shard_uuid=$(mysqlfabric group lookup_servers ${dest_

shard_name} | grep PRIMARY | awk ‘{print $1}’)
13 echo ${dest_shard_uuid}

1 ssh ${dest_ip} “service mysql stop && rm -rf /var/lib/
mysql/*”

2 ssh ${org_ip} “innobackupex --stream=xbstream /backups/ |
ssh root@${dest_ip} \”xbstream -x -C /var/lib/mysql\””

3
4 gtid_after_backup=$(ssh ${dest_ip} “cat /var/lib/mysql/xtra-

backup_binlog_info” | tr -d ‘\n’ | awk ‘{print $3}’)
5 echo ${gtid_after_backup}
6 ssh ${dest_ip} “innobackupex --apply-log --use-memory=2G /

var/lib/mysql”

48

This is a fairly typical process of provisioning GTID-based slave using xtrabackup. Only
exception is the UUID step in which we recreated auto.cnf with original UUID.

Next, we wait a bit so the replication will kick in and we can collect the seconds behind
master value. The idea here is that we want to make sure we catch up on the replication
before we proceed further.

At this point, we redirect the traffi c in ProxySQL - from now on, queries looking for
rows with id >= 800000 will be routed to new hostgroup. The catch here is that such
hostgroup still does not exist - we rely on ProxySQL to queue requests before our new
shard will be ready to process them.

Below is the content of rules.sql fi le:

7
8 ssh ${dest_ip} “echo ‘[auto]
9 server-uuid=${dest_shard_uuid}’ > /var/lib/mysql/auto.cnf”
10
11 ssh ${dest_ip} “chown -R mysql.mysql /var/lib/mysql ; ser-

vice mysql start”
12 mysql -h${dest_ip} -u${fabric_server_user} -p${fabric_serv-

er_pass} -e “RESET SLAVE ALL; RESET MASTER”
13 mysql -h${dest_ip} -u${fabric_server_user} -p${fabric_serv-

er_pass} -e “SET GLOBAL gtid_purged=’${gtid_after_back-
up}’ ; CHANGE MASTER TO MASTER_HOST=’${org_ip}’, MASTER_US-
ER=’${repl_user}’, \

14 MASTER_PASSWORD=’${repl_pass}’, MASTER_AUTO_POSITION=1;
START SLAVE;”

1 sleep 2s
2 SBM=$(mysql -h${dest_ip} -u${fabric_server_user} -p${fab-

ric_server_pass} -e “SHOW SLAVE STATUS\G” | grep Seconds_Be-
hind_Master | awk ‘{print $2}’)

3
4 while [${SBM} -gt 1]
5 do
6 SBM=$(mysql -h${dest_ip} -u${fabric_server_user}

-p${fabric_server_pass} -e “SHOW SLAVE STATUS\G” | grep Sec-
onds_Behind_Master | awk ‘{print $2}’)

7 echo ${SBM}
8 sleep 1s
9 done

1 mysql -P6032 -uadmin -padmin -h 127.0.0.1 < ./rules.sql

1 UPDATE mysql_query_rules SET match_pattern=’^SELECT .* FROM
sbtest[1-3] WHERE id=([5-7][0-9]{5}$)’ WHERE match_pattern
LIKE ‘^SELECT%[5-9][0-9]{5}|[1-9]{6,}$%’;

2 UPDATE mysql_query_rules SET match_pattern=’^UPDATE
sbtest[1-3].* WHERE id=([5-7][0-9]{5}$)’ WHERE match_pattern

49

Next, we collect the current value of GTID executed on the master of shard-2. We want
to have a GTID _after_ traffi c, which is intended to reach shard-3, stopped on shard-2.

Using this data, we start the replication on the shard-3 host up to that GTID - this will
ensure all queries in shard-3 range, which hit shard-2 before the routing change, will
be processed. Once this process completes, we add hosts to shard-3 hostgroups in
ProxySQL (which makes the traffi c hit those hosts and clean up the queue) and reslave
shard-3 master to global group master.

LIKE ‘^UPDATE%[5-9][0-9]{5}|[1-9]{6,}$%’;
3 UPDATE mysql_query_rules SET match_pattern=’^DELETE FROM

sbtest[1-3].* WHERE id=([5-7][0-9]{5}$)’ WHERE match_pattern
LIKE ‘^DELETE%[5-9][0-9]{5}|[1-9]{6,}$%’;

4 UPDATE mysql_query_rules SET match_pattern=’^INSERT INTO
sbtest[1-3] \(id, k, c, pad\) VALUES \(([5-7][0-9]{5},).*\)’
WHERE match_pattern LIKE ‘^INSERT%[5-9][0-9]{5}|[1-9]{6,}%’;

5 INSERT INTO mysql_query_rules (active, match_pattern, des-
tination_hostgroup, apply) VALUES (1, ‘^SELECT .* FROM
sbtest[1-3] WHERE id=([8-9][0-9]{5}|[1-9]{6,}$)’, 41, 1);

6 INSERT INTO mysql_query_rules (active, match_pattern, des-
tination_hostgroup, apply) VALUES (1, ‘^UPDATE sbtest[1-
3].*WHERE id=([8-9][0-9]{5}|[1-9]{6,}$)’, 42, 1);

7 INSERT INTO mysql_query_rules (active, match_pattern, desti-
nation_hostgroup, apply) VALUES (1, ‘^DELETE FROM sbtest[1-
3].*WHERE id=([8-9][0-9]{5}|[1-9]{6,}$)’, 42, 1);

8 INSERT INTO mysql_query_rules (active, match_pattern,
destination_hostgroup, apply) VALUES (1, ‘^INSERT INTO
sbtest[1-3] \(id, k, c, pad\) VALUES \(([8-9][0-9]{5}|[1-9]
{6,},).*\)$’, 42, 1);

9 LOAD MYSQL QUERY RULES TO RUNTIME;

1 gtid_target=$(mysql -h${org_ip} -u${fabric_server_user}
-p${fabric_server_pass} -e “show global variables like
‘gtid_executed’\G” | tr -d ‘\n’ | awk ‘{print $7}’)

2 echo ${gtid_target}

1 mysql -h${dest_ip} -u${fabric_server_user} -p${fabric_serv-
er_pass} -e “STOP SLAVE; START SLAVE UNTIL SQL_AFTER_
GTIDS=’${gtid_target}’”

2
3 sql_thread_running=$(mysql -h${dest_ip} -u${fabric_serv-

er_user} -p${fabric_server_pass} -e “SHOW SLAVE STATUS\G” |
grep Slave_SQL_Running | awk ‘{print $2}’)

4
5 while [“${sql_thread_running}” != “No”]
6 do
7 sql_thread_running=$(mysql -h${dest_ip} -u${fab-

ric_server_user} -p${fabric_server_pass} -e “SHOW SLAVE STA-
TUS\G” | grep Slave_SQL_Running | awk ‘{print $2}’)

8 SBM=$(mysql -h${dest_ip} -u${fabric_server_user}

50

Contents of the servers.sql fi le are:

This completes the process of preparing new shard and correctly confi guring routing.
We can then tell MySQL Fabric what we’ve done:

Final step will be to prune out-of-range data from all shards.

From now on, all shards will only contain their data.

-p${fabric_server_pass} -e “SHOW SLAVE STATUS\G” | grep Sec-
onds_Behind_Master | awk ‘{print $2}’)

9 echo ${SBM}
10 sleep 1s
11 done
12 mysql -P6032 -uadmin -padmin -h 127.0.0.1 < ./servers.sql
13
14 mysql -h${dest_ip} -u${fabric_server_user} -p${fabric_serv-

er_pass} -e “STOP SLAVE; RESET SLAVE ALL; CHANGE MASTER TO
MASTER_HOST=’${global_grp_ip}’, MASTER_USER=’${repl_user}’,
\

15 MASTER_PASSWORD=’${repl_pass}’, MASTER_AUTO_POSITION=1;”

1 INSERT INTO mysql_servers (hostgroup_id, hostname, port)
VALUES (41, ‘172.30.4.5’, 9907);

2 INSERT INTO mysql_servers (hostgroup_id, hostname, port)
VALUES (42, ‘172.30.4.5’, 9908);

3 LOAD MYSQL SERVERS TO RUNTIME;

1 root@ip-172-30-4-185:~# mysqlfabric sharding split_shard 14
shard-3 --split_value=800000 --update_only

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 7d6860a1-f83f-4351-b1bd-7050795a15d6 1 1 1

1 root@ip-172-30-4-185:~# mysqlfabric sharding prune_shard
sbtest.sbtest1

2 Fabric UUID: 5ca1ab1e-a007-feed-f00d-cab3fe13249e
3 Time-To-Live: 1
4
5 uuid fi nished success result
6 ------------------------------------ -------- ------- ------
7 b9d6ded7-aef6-43f7-bb86-6b3c56e56276 1 1 1

51

4.7. High availability aspect
We have not covered much about high availability of our sharded environment. At the
lowest level, it is covered by high availability groups - as long as you have more than
one host per group, you have redundancy with auto-promotion of slaves in case of
master failure.

MySQL Fabric itself is a single point of failure, although it is not critical to the operations
on our setup. MySQL Fabric may be down but traffi c will still be routed correctly, it’s
just that we will not be able to perform new operations in MySQL Fabric during that
time. The best method here is to setup an active - standby setup, replicating MySQL
Fabric database and have it installed on both hosts. Additionally, detailed monitoring
of MySQL Fabric process is needed to ensure it’ll be restarted when something goes
wrong. A standby host could be promoted to active in case the active server fails.

MySQL Router and ProxySQL can be located on the application hosts - it is a common
pattern to colocate the proxy with the application and treat them as one unit. As long
as you have more than one application host, you could build a pretty nice redundant
environment.

4.8. Summary
As you may have seen, we managed to build an environment and migrate into it
without any changes to the application. Unfortunately, there are limitations about what
options and operations on shards are available in the system. There are workarounds
which include building your own tooling to work around these limitations.

Eventually, it is up to you to decide how to proceed with the migration into MySQL
Fabric. For sure, you will be able to use it in a more fl exible way by skipping ProxySQL
and MySQL Router, and just using the Fabric connector to connect to MySQL. This
involves changes in the application as you need to rewrite code to handle connections.
This will require cooperation between the DBA/Sysadmin and the application
developers.

52

Severalnines provides automation and management software for database clusters. We
help companies deploy their databases in any environment, and manage all operational
aspects to achieve high-scale availability.

Severalnines’ products are used by developers and administrators of all skills levels
to provide the full ‘deploy, manage, monitor, scale’ database cycle, thus freeing them
from the complexity and learning curves that are typically associated with highly
available database clusters. The company has enabled over 8,000 deployments to date
via its popular ClusterControl solution. Currently counting BT, Orange, Cisco, CNRS,
Technicolour, AVG, Ping Identity and Paytrail as customers. Severalnines is a private
company headquartered in Stockholm, Sweden with offi ces in Singapore and Tokyo,
Japan. To see who is using Severalnines today visit, http://severalnines.com/customers.

About Severalnines

Deploy Manage Monitor Scale

53

Whitepapers

MySQL Replication Blueprint
The MySQL Replication Blueprint whitepaper includes all aspects
of a Replication topology with the ins and outs of deployment,
setting up replication, monitoring, upgrades, performing backups
and managing high availability using proxies.

Download here

Migrating to MySQL 5.7 - The Database
Upgrade Guide
Upgrading to a new major version involves risk, and it is
important to plan the whole process carefully. In this whitepaper,
we look at the important new changes in MySQL 5.7 and show
you how to plan the test process. We then look at how to do a
live system upgrade without downtime. For those who want to
avoid connection failures during slave restarts and switchover,
this document goes even further and shows you how to leverage
ProxySQL to achieve a graceful upgrade process.

Download here

Management and Automation of Open Source
Databases
Proprietary databases have been around for decades with a rich
third party ecosystem of management tools. But what about
open source databases? This whitepaper discusses the various
aspects of open source database automation and management
as well as the tools available to effi ciently run them.

Download here

Related Resources from
Severalnines

http://severalnines.com/whitepapers#download_whitepaper/4681
http://severalnines.com/whitepapers#download_whitepaper/4735
http://severalnines.com/whitepapers#download_whitepaper/4506

54
© 2016 Severalnines AB. All rights reserved. Severalnines and the Severalnines logo(s) are
trademarks of Severalnines AB. Other names may be trademarks of their respective owners.

Deploy Manage

Monitor Scale

	Why Sharding?
	How does Sharding work?
	2.1. Functional sharding
	2.2. Expression-based sharding
	2.3. Metadata-based sharding

	Sharding solutions
	3.1. Vitess
	3.1.1. Tablets
	3.1.2. How sharding works in Vitess?
	3.1.3. Migration into Vitess cluster

	3.2. MySQL Fabric
	3.2.1. High availability in MySQL Fabric
	3.2.2. Scaling out with MySQL Fabric
	3.2.3. Query routing in MySQL Fabric

	Migrating into sharded environment with MySQL Fabric
	4.1. Environment overview
	4.2. Setting up MySQL Fabric
	4.2.1. Installation
	4.2.2. Initial setup
	4.2.3. Setting up global replication group
	4.2.4. Define shard mappings
	4.2.5. Creating shards

	4.3. Setting up MySQL Router
	4.3.1. Installation of MySQL Router
	4.3.2. Configuring MySQL Router

	4.4. Configuring ProxySQL for sharding
	4.4.1. Configuring hostgroups
	4.4.2. Configuring query rules
	4.4.3. Testing of query rules

	4.5. Cutover process
	4.5.1. Preparations
	4.5.2. Cutover
	4.5.3. Cleanup

	4.6. Typical operations in MySQL Fabric sharded environment
	4.6.1. Add node to shard
	4.6.2. Remove node from a shard
	4.6.3. Promote a secondary node in a shard
	4.6.4. Move shard to a new high availability group
	4.6.5. Splitting the shard

	4.7. High availability aspect
	4.8. Summary

	About Severalnines
	Related Resources from Severalnines

